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Motivation for interrupts

• Imagine I have 300 watering tanks 
in my greenhouse

• I have one microprocessor that 
constantly monitors the water level 
at every single tank.

• It checks tank #1, then tank #2, 
and so on... Unfortunately it takes 
30 seconds per measurement 

• I really don’t want to wait a long 
time if I want to know how much 
water is in a particular tank.
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Interrupts

• Interrupts will tell the 
microprocessor to stop running 
whatever code he is working on, 
and execute a different code 
instead!

• Interrupts solve the response 
problem, but it makes programming 
a little bit harder.
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Assembly language

• Assembly (ASM) is the human-readable form of the instructions 
the microprocessor really knows how to do.

• A program (assembler) translates the assembly language into 
binary numbers such that the microprocessor can execute them.

• Each assembly instruction corresponds to a single 
microprocessor instruction.
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C-code vs ASM

• These days is quite un-usual to 
write code in ASM.

• Most projects use C or some 
variant.

• When we write the code in C, 
then our instructions are 
converted into multiple 
microprocessor instructions.

x = y + 133;   
 MOVE R1, (y)    ;Get the value of y into R1
 ADD R1, 133   ;Add 133
 MOVE (X),R1   ;Save the result in x
If (x >= z)   

  MOVE  R2,(z)   ;Get the value of z
 SUBTRACT R1,R2 ;Subtract z from x
 JCOND NEG,L101 ;Skip if the result is negative
Z += y;   
 MOVE R1,(y)   ;Get the value of y into R1
 ADD R2,R1   ;Add it to z.
 MOVE (z),R2   ;Save the result in z
w= sqrt (z);   
L101:   
 MOVE R1,(z)   ;Get the value of Z into R1
 PUSH R1    ;Put the parameter on the stack
 CALL SQRT    ;Call the sqrt function
 MOVE (w), R1   ;The result comes back in R1
 POP R1     ;Throw away the parameter
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Registers

• Every family of microprocessors has a different assembly 
language, because each architecture requires a different set of 
instructions. 

• The typical microprocessor has a different set of storage 
elements, registers, which are just flip-flops.

• Registers hold temporary data that will be used elsewhere.

• For example if we want to multiply two numbers, we need to 
store them in registers before sending them to the ALU. 

• Registers names vary for each architecture, but they are usually 
named R1, R2, R3, .... 
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Special purpose registers

• A general purpose register is 
used for storing temporary data that 
is in transit.

• A program counter is a special 
purpose register that stores the 
address of the next microprocessor 
instruction.

• A stack pointer is a special 
purpose register that store the 
address of the last free position in 
memory.

The stack pointer 
corresponds to the RAM 
address of the last useful 

data.  The contents of 
addresses before the 
stack pointer, can be 

replaced with new data.

useful data



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Interrupt basics

• Interrupts start with a signal from the 
hardware. 

• Most I/O chips (serial ports, network 
interfaces, ...) need attention when certain 
events occur. 

• Example: when a serial port chip receives a 
character from, it needs the 
microprocessor to read that character from 
where it is stored inside the serial port, into 
some memory location.
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Interrupt request

• When the interrupt request (IRQ) is 
asserted it stops executing the current 
sequence of instructions and jumps to an 
interrupt routine.

• Interrupt routines are code blocks you 
write with whatever needs to be done 
when an interrupt is requested.

• An interrupt routine is normally called 
interrupt handler or interrupt 
service routine (ISR).
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Example of an interrupt routine

• When the interrupt comes from 
the serial port chip, it means a 
new character has arrived.

• The interrupt routine must then 
read that character at once, and 
when done, the processor can 
resume its previous execution.

• There is no call to the ISR, 
since this section of the code 
will only be entered upon an 
interrupt assertion.
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Task code

• We call the task code to the 
code that is not part of the 
interrupt routine. 

• The task code is busily 
performing a conversion 
between Celsius to Fahrenheit.

• It move the Celsius into register 
R1 and performs the 
appropriate calculations and 
stores the result in R1.
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Interrupt routine

• When the interrupt happens, 
the task code will be suspended 
and all instructions from the 
interrupt routine are executed.

• When all instructions are done, 
the RETURN keyword will tell 
the microprocessor to resume 
the task code.
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What is task code doing?

• The task code puts the 
temperature in R1

• It multiplies it by 9 and stores 
the result in R1

• Then it divides it by 5 and also 
stores it in R1.

• Adds 32 to it and also stores it 
in R1.

• ... So if  the value of R1 changes 
in the interrupt, then the 
computation will be wrong!
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Stack PUSH and POP

• It is very hard for the interrupt 
routine not to use registers like 
R1.

• So we must save relevant 
register content into the stack.

• That is why we must add the 
PUSH R1 and PUSH R2 
operations, and then POPing 
them at the end.

• PUSH means we “put stuff” into 
the stack. POP means we “take 
stuff” from the top of the stack.
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Saving and restoring context

• When we are storing all 
register contents we are 
saving context.

• Restoring context happens 
when we restore register 
contents.

• If we did not perform the saving 
and/or restoring context, then 
the program would work most 
of the times. 

• Some times it would calculate 
correctly... others it would not! 
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Disabling interrupts

• Through a single instruction you can tell almost every system to 
disable (and then enable) interrupts. 

• However, most microprocessors have a single pin that contains 
an interrupt that cannot be disabled. This is the non-maskable 
interrupt. 

• If you must use this non-maskable interrupt, and you don’t want 
to get into trouble, make sure the interrupt routine and the task 
code do not share data.

• Why do you care about these interrupts? For example, you can 
use them to allow your system to recover from a power failure.
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Interrupt priority

• Also, microprocessors can assign a priority to each interrupt 
request signal. 

• This means you can specify the priority of each interrupt. 

• You can then disable all interrupts by setting the acceptable 
priority higher than that of any interrupt.

• You can enable all interrupts by setting the acceptable priority 
very low. 
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Common interrupt questions
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How does the microprocessor know 
where to find the ISR?

Q: How does the microprocessor know where to find the 
interrupt routine when the interrupt occurs? 

A: Two different ways:

1. Older microprocessors architectures assume that the 
interrupt service routine is at a fixed location. 

2. On all recent microprocessors there is a table somewhere in 
memory with all interrupt vectors, which contain the 
addresses of the interrupt routines. So, when an interrupt 
occurs, the microprocessor will look up the address of the 
interrupt routine in this interrupt vector table. 
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How do microprocessors know 
where the interrupt vector table is?

Q: How do microprocessors (that use an interrupt vector table) 
know where the table is? 

A: The interrupt vector table is always at the same location in 
memory. For the Intel 80186 is at position 0x00000 
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Can a microprocessor be interrupted 
in the middle of an instruction? 

Q: Can a microprocessor be 
interrupted in the middle of an 
instruction? 

A: Usually not. In almost 
every case, the 
microprocessor will finish the 
instruction that it is working 
on before jumping to the 
interrupt routine. 
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On two simultaneous interrupts, 
which one goes first?

Q: If two interrupts happen at the same time, which interrupt 
routine does the microprocessor do first? 

A: Almost every microprocessor assigns a priority to each 
interrupt signal, and the microprocessor will do the interrupt 
routine associated with the higher-priority signal first.
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Signaled interrupt when interrupts are 
disabled

Q: What happens if an interrupt is signaled while the interrupts 
are disabled? 

A: In most cases the microprocessor will remember the 
interrupt until interrupts are reenabled, at which point it will 
jump to the interrupt routine. 

If more than one interrupt is signaled while interrupts are 
disabled, the microprocessor will do them in priority order when 
interrupts are reenabled. 
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Multiple interrupts

Q: Can an interrupt request signal interrupt another interrupt 
routine? 

A: Yes (on most micro­processors). This is called interrupt 
nesting. 

A higher-priority interrupt can interrupt a lower-priority 
interrupt routine. A lower priority interrupt will wait until the 
higher priority interrupt is done.

The Intel x86 microprocessors disable all interrupts automatically 
whenever they enter any interrupt routine; therefore, the 
interrupt routines must reenable interrupts to allow nesting.
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I forgot to reenable the interrupts

Q: What happens if I disable interrupts and then forget to 
reenable them? 

A: The micro­processor will execute no more interrupt routines  
until they are re-enabled. 

When interrupts are reenabled, they will sequentially be 
processed by priority order.



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Enabling / disabling interrupts multiple 
times

Q: What happens if I disable interrupts when they are already 
disabled or enable interrupts when they are already enabled? 

A: Nothing. You just wasted a clock cycle.
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Default interrupt state

Q: Are interrupts enabled or disabled when the microprocessor 
first starts up? 

A: Most often, they are disabled.
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Can I write my interrupt routines in 
C?

Q: Can I write my interrupt routines in C? 

A: Yes, usually. Most compilers used for embedded-systems code 
allows you to tell the compiler that a particular function is an 
interrupt routine. For example:

void  interrupt vHandleTimerlRQ  (void) { (...) }

The most common reason for writing interrupt routines in 
assembly language is that on many micro­processors you can 
write faster code in assembly language than you can in C.

By the way, you can embed ASM code inside you C code.
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Shared-data problem
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Premise for the shared-data problem

• This is a nuclear reactor.

• Periodic temperature 
measurements occur at two 
separate locations.

• If the temperature at these 
two locations are different 
then sound the alarm! 

• Different temperatures 
means we may have a 
nuclear fallout!
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Code #1
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Shared-data problem

• One big problem arises as soon as 
your interrupt routines need to 
communicate with the rest of your 
code. 

• It is often not possible or desirable 
for microprocessors to complete 
all its work in interrupt routines. 

• The interrupt routines and the 
task code must share one or more 
variables so that they can 
communicate with one another.

static int iTemperatures[2];

void interrupt vReadTemperatures  (void)
{ 
  iTemperatures[0] = !! read data from hardware
  iTemperatures[1] = !! read data from hardware
}

void main (void) {
  int iTemp0, iTemp1;
  while (TRUE) {
    iTemp0 = iTemperatures[0];   
 iTemp1 = iTemperatures[1]; 
 if (iTemp0 != iTemp1)

  { !! Set off howling alarm } 
 } 
} 
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Notation to make life easier

static int iTemperatures[2];

void interrupt vReadTemperatures  (void)
{ 
  iTemperatures[0] = !! read data from hardware
  iTemperatures[1] = !! read data from hardware
}

void main (void) {
  int iTemp0, iTemp1;
  while (TRUE) {
    iTemp0 = iTemperatures[0];   
 iTemp1 = iTemperatures[1]; 
 if (iTemp0 != iTemp1)

  { !! Set off howling alarm } 
 } 
} 

The !! means I am 
omitting some 

nasty code that we 
don’t need to know 

how to 
implement... We 

just need to know 
the outcome.
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What is the problem with this code?

static int iTemperatures[2];

void interrupt vReadTemperatures  (void)
{ 
  iTemperatures[0] = !! read data from hardware
  iTemperatures[1] = !! read data from hardware
}

void main (void) {
  int iTemp0, iTemp1;
  while (TRUE) {
    iTemp0 = iTemperatures[0];   
 iTemp1 = iTemperatures[1]; 
 if (iTemp0 != iTemp1)

  { !! Set off howling alarm } 
 } 
} 

• Suppose both temperatures have 
been 73 degrees for a long time.

• iTemperatures[0]=73 and 
iTemperatures[1]=73

• Suppose an interrupt happens 
here, right after iTemp0=73

• Now both temperatures have 
increased to 74.

• When interrupt resumes 
iTemp1=74 but iTemp0 is still 73!
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Code #2



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Shared-data problem

Problem static int iTemperatures[2];
void interrupt vReadTemperatures  (void)
{
 iTemperatures[0] = !!  read from hardware
 iTemperatures[1] = !!  read from hardware
}

void main  (void) {
  while  (TRUE) 
  {
    if  (iTemperatures[0] != iTemperatures[1]) 
       !! Set off howling alarm; 
   } 
} 

• What about this code? Does it 
solve the problem?

• Unfortunately it doesn’t... 
Remember a single instruction in 
C, may be many assembly 
instructions.

MOVE R1, iTemperatures[0])
MOVE R2, (iTemperatures[1])
SUBTRACT R1,R2
JCOND ZERO, TEMPERATURES_0K
;  Code to sound the alarm

TEMPERATURES_OK:

• Look at the equivalent ASM code.

• If an interrupt occurs after the line MOVE 
R1, iTemperatures[0]), the same problem 
will arise.
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Shared-data problem

Problem static int iTemperatures[2];
void interrupt vReadTemperatures  (void)
{
 iTemperatures[0] = !!  read from hardware
 iTemperatures[1] = !!  read from hardware
}

void main  (void) {
  while  (TRUE) 
  {
    if  (iTemperatures[0] != iTemperatures[1]) 
       !! Set off howling alarm; 
   } 
} 

• What about this code? Does it 
solve the problem?

• Unfortunately it doesn’t... 
Remember a single instruction in 
C, may be many assembly 
instructions.

MOVE R1, iTemperatures[0])
MOVE R2, (iTemperatures[1])
SUBTRACT R1,R2
JCOND ZERO, TEMPERATURES_0K
;  Code to sound the alarm

TEMPERATURES_OK:

• Look at the equivalent ASM code.

• If an interrupt occurs after the line MOVE 
R1, iTemperatures[0]), the same problem 
will arise.
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Characteristics of the shared data 
problem

• The problem with both codes is that the iTemperatures array is 
shared between the interrupt routine and the task code. 

• Shared data bugs are difficult to find since they do not happen 
every time the code runs. 

• Whenever an interrupt routine and your task code share data, 
carefully study the problem so that you do not have a shared-
data bug. 
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Solving the shared data 
problem
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Solving shared data problem with 
method #1

• We can disable interrupts 
whenever the task code uses 
shared data. 

• While the interrupts are 
disabled, the hardware can assert 
the interrupt signal requesting 
service ... but the microprocessor 
will not jump to the interrupt 
routine. 

static int iTemperatures[2];
void interrupt vReadTemperatures  (void)
{
  iTemperatures[0] = !!read some data
  iTemperatures[1] = !!read some data
}

void main  (void) 
{
  int iTemp0, iTempi;
  while (TRUE) {
  //Disable interrupts while we use the array
  disable ();
  iTemp0 = iTemperatures[0];
  iTemp1 = iTemperatures[1];
  //Enable interrupts again
  enable ();
  if  (iTemp0 != iTemp1)!! Set off howling 
alarm; 
 } 
} 
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Method #1 using assembler

static int iTemperatures[2];
void interrupt vReadTemperatures  (void)
{
  iTemperatures[0] = !!read some data
  iTemperatures[1] = !!read some data
}

void main  (void) 
{
  int iTemp0, iTempi;
  while (TRUE) {
  //Disable interrupts while we use the array
  disable ();
  iTemp0 = iTemperatures[0];
  iTemp1 = iTemperatures[1];
  Enable interrupts again
  enable ();
  if  (iTemp0 != iTemp1)!! Set off howling 
alarm; 
 } 
} 

;disable interrupts 
DI    

;use the arrays
MOVE R1,(iTemperature[0])
MOVE R2,(iTemperature[l])

;enable interrupts again
EI
SUBTRACT R1, R2
JCOND ZERO,TEMPERATURES_OK

;  Code goes here to set off the alarm

TEMPERATURES_OK: 

• No C compilers or assemblers 
are smart enough to figure out 
when it is necessary to disable 
interrupts. 
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"Atomic" sections

• A part of a program is said 
to be atomic if it cannot be 
interrupted. 

• This is the atomic section of 
this program.

• The shared-data problem 
arises when an interrupt 
routine and the task code 
share data, and the task code 
uses the shared data in a way 
that is not atomic. 

static int iTemperatures[2];
void interrupt vReadTemperatures  (void)
{
  iTemperatures[0] = !!read some data
  iTemperatures[1] = !!read some data
}

void main  (void) 
{
  int iTemp0, iTempi;
  while (TRUE) {
  //Disable interrupts while we use the array
  disable ();
  iTemp0 = iTemperatures[0];
  iTemp1 = iTemperatures[1];
  Enable interrupts again
  enable ();
  if  (iTemp0 != iTemp1)!! Set off howling 
alarm; 
 } 
} 
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"Critical" sections

• The disable/enable interrupt 
functions that use the shared 
data, is what made that 
section atomic. 

• A set of instructions that 
must be atomic for the 
system to work properly is 
often called a critical 
section. 

• This particular atomic 
section, is also critical!

static int iTemperatures[2];
void interrupt vReadTemperatures  (void)
{
  iTemperatures[0] = !!read some data
  iTemperatures[1] = !!read some data
}

void main  (void) 
{
  int iTemp0, iTempi;
  while (TRUE) {
  //Disable interrupts while we use the array
  disable ();
  iTemp0 = iTemperatures[0];
  iTemp1 = iTemperatures[1];
  Enable interrupts again
  enable ();
  if  (iTemp0 != iTemp1)!! Set off howling 
alarm; 
 } 
} 
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Another shared data problem 
example
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Interrupts with a timer 

• The function 
ISecondsSinceMidnight returns the 
number of seconds since midnight. 

• A hardware timer asserts an 
interrupt signal every second, 
which causes the microprocessor 
to run the interrupt routine 
vUpdateTime to update the static 
variables that keep track of the 
time. 

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight  (void) 
{
 return  ( (((iHours * 60) + iMinutes) * 
60) + iSeconds); 
} 
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Where is the problem?

•  If the hardware timer interrupts 
while the microprocessor is doing 
the arithmetic in 
ISecondsSinceMidnight, then the 
result might be wrong. 

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight  (void) 
{
 return  ( (((iHours * 60) + iMinutes) * 
60) + iSeconds); 
} 
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How bad can it be? Very bad!

• Suppose that the time is 3:59:59. 

• The function 
ISecondsSinceMidnight might read 
iHours as 3.

• However, if the interrupt occurs 
and changes the time to 4:00:00.

• ISecondsSinceMidnight will read 
iMinutes, and iSeconds as 0. 

• Returning a value that makes it 
look as though the time is 3:00:00, 
which is 1 hour off!!!

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight  (void) 
{
 return  ( (((iHours * 60) + iMinutes) * 
60) + iSeconds); 
} 



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

An even worse solution!

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight  (void) { 
  disable  ();
  return ( (((iHours * 60) + iMinutes) * 
60) + iSeconds);
  enable ();     
} 

Why is this so bad?
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Why is this so bad?

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight  (void) { 
  disable  ();
  return ( (((iHours * 60) + iMinutes) * 
60) + iSeconds);
  enable ();     
} 

• Well... The function 
ISecondsSinceMidnight will always 
return before enabling the 
interrupts.

• Interrupts will never be enabled, so 
the time obtained through the 
function vUpdateTime will never 
change.
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Slightly better solution... but still has 
problems

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void) {
  long IReturnVal;
  disable ();
  IReturnVal  =(((iHours * 60) + 
iMinutes)  * 60) + iSeconds;
  enable  ();  
return  (IReturnVal); 
} 

• Suppose that 
ISecondsSinceMidnight is called 
from inside a critical section 
somewhere else in the program

• Critical section means that 
interrupts are disabled. 

• A bug will be caused since we are 
now enabling interrupts inside a 
critical section.
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Visual representation

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void) {
  long IReturnVal;
  disable ();
  IReturnVal  =(((iHours * 60) + 
iMinutes)  * 60) + iSeconds;
  enable  ();  
return  (IReturnVal); 
} 

disable interrupt

random code #1

enable interrupt

use function 
ISecondsSinceMidnight

random code #2

disable interrupt

enable interrupt

return some stuff

• If an interrupt happens sometime 
during random code #2, then it will 
be processed immediately! 
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The “best” solution

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
  ++iSeconds;
  if (iSeconds >= 60)
  {
      iSeconds = 0;
   ++iMinutes;
   if (iMinutes >= 60)
  {
      iMinutes = 0; ++iHours; 
      if (iHours >= 24) iHours = 0; 
  } 
 }
 !!Do other stuff in hardware
}

long lSecondsSinceMidnight (void) {
 long lReturnVal;
 bool fInterruptStateOld; 
 fInterruptStateOld = disable (); //are interrupts already disabled?

 IReturnVal =(((iHours * 60) + iMinutes) * 60) + iSeconds; 
    if (flnterruptStateOld) { enable (); } //Restore interrupts to previous state
 
 return  (lReturnVal); 
}

• If interrupts are already disabled, 
don’t disable / enable them again!

• The disable() function not only 
disables the interrupts, but it will 
also tell you if they are already 
disabled. 

• A bit slower, than previous code.
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Interrupt latency
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Interrupt latency

• Because interrupts are a tool for getting better response from 
our systems, and because the speed which an embedded system 
can respond is always of interest ...

• How fast does my system respond to each interrupt?

• Interrupt latency is the amount of time it takes for a system 
to respond to an interrupt.
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How fast does my system respond to 
an interrupt?

Depends on 4 factors:

1. The longest period of time where that interrupt is disabled.

2. The time it takes to execute the interrupt routines for 
interrupts that are of higher priority than the one in question.

3. How long it takes the microprocessor to stop what it is doing, 
do the necessary bookkeeping, and start executing instructions 
within the interrupt routine.

4. How long it takes the interrupt routine to save the context and 
then run the interrupt code.
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Get some timing information

How do I get the times associated with the four factors listed on 
the previous slide?

• Read microprocessor documentation.

• Write the code and measure how long it takes to execute.

• Count the instructions of various types and how long each type 
of instruction takes.

If I want to make my system to respond faster to interrupts, the 
shorter the period during which interrupts are disabled, the 
better my response will be. 
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Example #1

Suppose that the requirements for your system are as follows: 

• Disable interrupts for 125μsec while you run random code A. 

• Disable interrupts for another 250μsec while you some random 
code B.

• Whenever some other processor asks for resources, you must give 
them within 625μsec.

• It takes 300μsec for your system to give the other processor his 
desired resources (interprocessor interrupt routine).

Question: Is it possible to implement this system?
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Worst case interrupt latency

• Disable interrupts for 125μsec while 
you run random code A. 

• Disable interrupts for another 250μsec 
while you some random code B.

• Whenever some other processor asks 
for resources, you must give them 
within 625μsec.

• It takes 300μsec for your system to 
give the other processor his desired 
resources (interprocessor interrupt 
routine).
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We can definitely implement this 
system

• Interrupts are disabled in our system 
for at most 250μsec.

• The worst case scenario happens when 
the longest period when interrupts are 
disabled (the 250μsec mentioned 
before).

• The interrupt routine needs 300μsec 
to run. 

• The longest time it can take to run is 
300μsec+250μsec = 550μsec.

• This is within the desired response 
time of 625μsec.
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Example #2

• Will this system work with a processor that is half the speed?

• This means all the processing times are doubled: interrupts are 
disabled for twice as long, the interrupt service routine takes 
twice as long, but the 625-μsec deadline remains the same. 

• Will the system meet its deadline? No! 

• Interrupts will be disabled for up to 500 μsec at a time, and the 
interrupt service routine needs 600μsec to do its work. 

• The total of is 1100 μsec, much longer than the 625-μsec 
deadline. 
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Example #3

• Some random code requires interrupts to be disabled for 250μsec. 

• A network card was added to the system, and its hardware 
interrupt takes100μsec to process. 

• Whenever some other processor asks for resources, you must give 
them within 625μsec.

• It takes 300μsec for your system to give the other processor his 
desired resources (interprocessor interrupt routine).

Question: Is it possible to implement this system? It depends...
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Importance of interrupt priorities

• Interrupts disabled for 250μsec. 

• A network card interrupt 
takes100μsec to process. 

• Time to deadline 625μsec.

• Interprocessor interrupt routine 
takes 300μsec to process.

Only if I assign a lower priority 
to the network card we will be 
able to meet the deadline!

In this diagram, the network 
card is assigned a higher priority 
and the deadline will NOT be 

met!
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Why won’t the deadline be met if the 
network ISR has a higher priority?

• In most micro-controllers, only one 
thing can be running at the same 
time!

• Higher priority means an interrupt 
will be executed first.

• If the Network ISR takes 100μsec 
to be done, the Processor ISR will 
have to wait until done.

• If the Processor ISR has higher 
priority, it will be done first, and it 
could even interrupt the Network 
ISR.

In this diagram, the network 
card is assigned a higher priority 
and the deadline will NOT be 

met!
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Polling
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I/O Systems

• Many devices are operating independently of the processor – 
except when communication happens

• We say that these devices are acting asynchronously of the 
processor

• The processor must have some way of knowing that something 
has changed with the device (e.g., that it is ready to send or 
receive information).

• Up till now we discussed interrupts.
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Polling is a bad way to check the state 
of the device

With polling, the processor continually checks the state of the 
device:

This piece of code will loop until x is different than 0.
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Why is polling so bad?

• In embedded systems, we are typically managing many devices at 
once.

• We can potentially be waiting for a long time before the state 
changes.

• We call this busy waiting.

• The processor is wasting time that could be used to do other 
tasks.
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I/O By Polling: An Alternative

One alternative is to do something while we are waiting...

Polling works great ... but:
• We have to guarantee that our “something else” does not take too long 
(otherwise, we may miss the event)

• Depending on the device, “too long” may be very short
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When to use polling instead of 
interrupts?

In generally we avoid polling I/O like the plague!

However, we use polling approach for situations in which:

• We don’t want to deal with shared data problems in interrupts.

• We know the event is coming very soon (nsec to μsec range). 

• We must respond to the event very quickly (nsec to μsec range). 


