
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Introduction to interrupts
Reference: Simon chapter 4

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Motivation for interrupts

• Imagine I have 300 watering tanks
in my greenhouse

• I have one microprocessor that
constantly monitors the water level
at every single tank.

• It checks tank #1, then tank #2,
and so on... Unfortunately it takes
30 seconds per measurement

• I really don’t want to wait a long
time if I want to know how much
water is in a particular tank.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupts

• Interrupts will tell the
microprocessor to stop running
whatever code he is working on,
and execute a different code
instead!

• Interrupts solve the response
problem, but it makes programming
a little bit harder.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Assembly language

• Assembly (ASM) is the human-readable form of the instructions
the microprocessor really knows how to do.

• A program (assembler) translates the assembly language into
binary numbers such that the microprocessor can execute them.

• Each assembly instruction corresponds to a single
microprocessor instruction.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-code vs ASM

• These days is quite un-usual to
write code in ASM.

• Most projects use C or some
variant.

• When we write the code in C,
then our instructions are
converted into multiple
microprocessor instructions.

x = y + 133;
 MOVE R1, (y) ;Get the value of y into R1
 ADD R1, 133 ;Add 133
 MOVE (X),R1 ;Save the result in x
If (x >= z)

 MOVE R2,(z) ;Get the value of z
 SUBTRACT R1,R2 ;Subtract z from x
 JCOND NEG,L101 ;Skip if the result is negative
Z += y;
 MOVE R1,(y) ;Get the value of y into R1
 ADD R2,R1 ;Add it to z.
 MOVE (z),R2 ;Save the result in z
w= sqrt (z);
L101:
 MOVE R1,(z) ;Get the value of Z into R1
 PUSH R1 ;Put the parameter on the stack
 CALL SQRT ;Call the sqrt function
 MOVE (w), R1 ;The result comes back in R1
 POP R1 ;Throw away the parameter

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Registers

• Every family of microprocessors has a different assembly
language, because each architecture requires a different set of
instructions.

• The typical microprocessor has a different set of storage
elements, registers, which are just flip-flops.

• Registers hold temporary data that will be used elsewhere.

• For example if we want to multiply two numbers, we need to
store them in registers before sending them to the ALU.

• Registers names vary for each architecture, but they are usually
named R1, R2, R3,

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Special purpose registers

• A general purpose register is
used for storing temporary data that
is in transit.

• A program counter is a special
purpose register that stores the
address of the next microprocessor
instruction.

• A stack pointer is a special
purpose register that store the
address of the last free position in
memory.

The stack pointer
corresponds to the RAM
address of the last useful

data. The contents of
addresses before the
stack pointer, can be

replaced with new data.

useful data

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupt basics

• Interrupts start with a signal from the
hardware.

• Most I/O chips (serial ports, network
interfaces, ...) need attention when certain
events occur.

• Example: when a serial port chip receives a
character from, it needs the
microprocessor to read that character from
where it is stored inside the serial port, into
some memory location.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupt request

• When the interrupt request (IRQ) is
asserted it stops executing the current
sequence of instructions and jumps to an
interrupt routine.

• Interrupt routines are code blocks you
write with whatever needs to be done
when an interrupt is requested.

• An interrupt routine is normally called
interrupt handler or interrupt
service routine (ISR).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of an interrupt routine

• When the interrupt comes from
the serial port chip, it means a
new character has arrived.

• The interrupt routine must then
read that character at once, and
when done, the processor can
resume its previous execution.

• There is no call to the ISR,
since this section of the code
will only be entered upon an
interrupt assertion.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Task code

• We call the task code to the
code that is not part of the
interrupt routine.

• The task code is busily
performing a conversion
between Celsius to Fahrenheit.

• It move the Celsius into register
R1 and performs the
appropriate calculations and
stores the result in R1.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupt routine

• When the interrupt happens,
the task code will be suspended
and all instructions from the
interrupt routine are executed.

• When all instructions are done,
the RETURN keyword will tell
the microprocessor to resume
the task code.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is task code doing?

• The task code puts the
temperature in R1

• It multiplies it by 9 and stores
the result in R1

• Then it divides it by 5 and also
stores it in R1.

• Adds 32 to it and also stores it
in R1.

• ... So if the value of R1 changes
in the interrupt, then the
computation will be wrong!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Stack PUSH and POP

• It is very hard for the interrupt
routine not to use registers like
R1.

• So we must save relevant
register content into the stack.

• That is why we must add the
PUSH R1 and PUSH R2
operations, and then POPing
them at the end.

• PUSH means we “put stuff” into
the stack. POP means we “take
stuff” from the top of the stack.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Saving and restoring context

• When we are storing all
register contents we are
saving context.

• Restoring context happens
when we restore register
contents.

• If we did not perform the saving
and/or restoring context, then
the program would work most
of the times.

• Some times it would calculate
correctly... others it would not!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Disabling interrupts

• Through a single instruction you can tell almost every system to
disable (and then enable) interrupts.

• However, most microprocessors have a single pin that contains
an interrupt that cannot be disabled. This is the non-maskable
interrupt.

• If you must use this non-maskable interrupt, and you don’t want
to get into trouble, make sure the interrupt routine and the task
code do not share data.

• Why do you care about these interrupts? For example, you can
use them to allow your system to recover from a power failure.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupt priority

• Also, microprocessors can assign a priority to each interrupt
request signal.

• This means you can specify the priority of each interrupt.

• You can then disable all interrupts by setting the acceptable
priority higher than that of any interrupt.

• You can enable all interrupts by setting the acceptable priority
very low.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Common interrupt questions

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How does the microprocessor know
where to find the ISR?

Q: How does the microprocessor know where to find the
interrupt routine when the interrupt occurs?

A: Two different ways:

1. Older microprocessors architectures assume that the
interrupt service routine is at a fixed location.

2. On all recent microprocessors there is a table somewhere in
memory with all interrupt vectors, which contain the
addresses of the interrupt routines. So, when an interrupt
occurs, the microprocessor will look up the address of the
interrupt routine in this interrupt vector table.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How do microprocessors know
where the interrupt vector table is?

Q: How do microprocessors (that use an interrupt vector table)
know where the table is?

A: The interrupt vector table is always at the same location in
memory. For the Intel 80186 is at position 0x00000

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Can a microprocessor be interrupted
in the middle of an instruction?

Q: Can a microprocessor be
interrupted in the middle of an
instruction?

A: Usually not. In almost
every case, the
microprocessor will finish the
instruction that it is working
on before jumping to the
interrupt routine.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

On two simultaneous interrupts,
which one goes first?

Q: If two interrupts happen at the same time, which interrupt
routine does the microprocessor do first?

A: Almost every microprocessor assigns a priority to each
interrupt signal, and the microprocessor will do the interrupt
routine associated with the higher-priority signal first.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Signaled interrupt when interrupts are
disabled

Q: What happens if an interrupt is signaled while the interrupts
are disabled?

A: In most cases the microprocessor will remember the
interrupt until interrupts are reenabled, at which point it will
jump to the interrupt routine.

If more than one interrupt is signaled while interrupts are
disabled, the microprocessor will do them in priority order when
interrupts are reenabled.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Multiple interrupts

Q: Can an interrupt request signal interrupt another interrupt
routine?

A: Yes (on most micro­processors). This is called interrupt
nesting.

A higher-priority interrupt can interrupt a lower-priority
interrupt routine. A lower priority interrupt will wait until the
higher priority interrupt is done.

The Intel x86 microprocessors disable all interrupts automatically
whenever they enter any interrupt routine; therefore, the
interrupt routines must reenable interrupts to allow nesting.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

I forgot to reenable the interrupts

Q: What happens if I disable interrupts and then forget to
reenable them?

A: The micro­processor will execute no more interrupt routines
until they are re-enabled.

When interrupts are reenabled, they will sequentially be
processed by priority order.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Enabling / disabling interrupts multiple
times

Q: What happens if I disable interrupts when they are already
disabled or enable interrupts when they are already enabled?

A: Nothing. You just wasted a clock cycle.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Default interrupt state

Q: Are interrupts enabled or disabled when the microprocessor
first starts up?

A: Most often, they are disabled.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Can I write my interrupt routines in
C?

Q: Can I write my interrupt routines in C?

A: Yes, usually. Most compilers used for embedded-systems code
allows you to tell the compiler that a particular function is an
interrupt routine. For example:

void interrupt vHandleTimerlRQ (void) { (...) }

The most common reason for writing interrupt routines in
assembly language is that on many micro­processors you can
write faster code in assembly language than you can in C.

By the way, you can embed ASM code inside you C code.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Shared-data problem

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Premise for the shared-data problem

• This is a nuclear reactor.

• Periodic temperature
measurements occur at two
separate locations.

• If the temperature at these
two locations are different
then sound the alarm!

• Different temperatures
means we may have a
nuclear fallout!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code #1

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Shared-data problem

• One big problem arises as soon as
your interrupt routines need to
communicate with the rest of your
code.

• It is often not possible or desirable
for microprocessors to complete
all its work in interrupt routines.

• The interrupt routines and the
task code must share one or more
variables so that they can
communicate with one another.

static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !! read data from hardware
 iTemperatures[1] = !! read data from hardware
}

void main (void) {
 int iTemp0, iTemp1;
 while (TRUE) {
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 if (iTemp0 != iTemp1)

 { !! Set off howling alarm }
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Notation to make life easier

static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !! read data from hardware
 iTemperatures[1] = !! read data from hardware
}

void main (void) {
 int iTemp0, iTemp1;
 while (TRUE) {
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 if (iTemp0 != iTemp1)

 { !! Set off howling alarm }
 }
}

The !! means I am
omitting some

nasty code that we
don’t need to know

how to
implement... We

just need to know
the outcome.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is the problem with this code?

static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !! read data from hardware
 iTemperatures[1] = !! read data from hardware
}

void main (void) {
 int iTemp0, iTemp1;
 while (TRUE) {
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 if (iTemp0 != iTemp1)

 { !! Set off howling alarm }
 }
}

• Suppose both temperatures have
been 73 degrees for a long time.

• iTemperatures[0]=73 and
iTemperatures[1]=73

• Suppose an interrupt happens
here, right after iTemp0=73

• Now both temperatures have
increased to 74.

• When interrupt resumes
iTemp1=74 but iTemp0 is still 73!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code #2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Shared-data problem

Problem static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !! read from hardware
 iTemperatures[1] = !! read from hardware
}

void main (void) {
 while (TRUE)
 {
 if (iTemperatures[0] != iTemperatures[1])
 !! Set off howling alarm;
 }
}

• What about this code? Does it
solve the problem?

• Unfortunately it doesn’t...
Remember a single instruction in
C, may be many assembly
instructions.

MOVE R1, iTemperatures[0])
MOVE R2, (iTemperatures[1])
SUBTRACT R1,R2
JCOND ZERO, TEMPERATURES_0K
; Code to sound the alarm

TEMPERATURES_OK:

• Look at the equivalent ASM code.

• If an interrupt occurs after the line MOVE
R1, iTemperatures[0]), the same problem
will arise.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Shared-data problem

Problem static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !! read from hardware
 iTemperatures[1] = !! read from hardware
}

void main (void) {
 while (TRUE)
 {
 if (iTemperatures[0] != iTemperatures[1])
 !! Set off howling alarm;
 }
}

• What about this code? Does it
solve the problem?

• Unfortunately it doesn’t...
Remember a single instruction in
C, may be many assembly
instructions.

MOVE R1, iTemperatures[0])
MOVE R2, (iTemperatures[1])
SUBTRACT R1,R2
JCOND ZERO, TEMPERATURES_0K
; Code to sound the alarm

TEMPERATURES_OK:

• Look at the equivalent ASM code.

• If an interrupt occurs after the line MOVE
R1, iTemperatures[0]), the same problem
will arise.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Characteristics of the shared data
problem

• The problem with both codes is that the iTemperatures array is
shared between the interrupt routine and the task code.

• Shared data bugs are difficult to find since they do not happen
every time the code runs.

• Whenever an interrupt routine and your task code share data,
carefully study the problem so that you do not have a shared-
data bug.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Solving the shared data
problem

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Solving shared data problem with
method #1

• We can disable interrupts
whenever the task code uses
shared data.

• While the interrupts are
disabled, the hardware can assert
the interrupt signal requesting
service ... but the microprocessor
will not jump to the interrupt
routine.

static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !!read some data
 iTemperatures[1] = !!read some data
}

void main (void)
{
 int iTemp0, iTempi;
 while (TRUE) {
 //Disable interrupts while we use the array
 disable ();
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 //Enable interrupts again
 enable ();
 if (iTemp0 != iTemp1)!! Set off howling
alarm;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Method #1 using assembler

static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !!read some data
 iTemperatures[1] = !!read some data
}

void main (void)
{
 int iTemp0, iTempi;
 while (TRUE) {
 //Disable interrupts while we use the array
 disable ();
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 Enable interrupts again
 enable ();
 if (iTemp0 != iTemp1)!! Set off howling
alarm;
 }
}

;disable interrupts
DI

;use the arrays
MOVE R1,(iTemperature[0])
MOVE R2,(iTemperature[l])

;enable interrupts again
EI
SUBTRACT R1, R2
JCOND ZERO,TEMPERATURES_OK

; Code goes here to set off the alarm

TEMPERATURES_OK:

• No C compilers or assemblers
are smart enough to figure out
when it is necessary to disable
interrupts.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

"Atomic" sections

• A part of a program is said
to be atomic if it cannot be
interrupted.

• This is the atomic section of
this program.

• The shared-data problem
arises when an interrupt
routine and the task code
share data, and the task code
uses the shared data in a way
that is not atomic.

static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !!read some data
 iTemperatures[1] = !!read some data
}

void main (void)
{
 int iTemp0, iTempi;
 while (TRUE) {
 //Disable interrupts while we use the array
 disable ();
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 Enable interrupts again
 enable ();
 if (iTemp0 != iTemp1)!! Set off howling
alarm;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

"Critical" sections

• The disable/enable interrupt
functions that use the shared
data, is what made that
section atomic.

• A set of instructions that
must be atomic for the
system to work properly is
often called a critical
section.

• This particular atomic
section, is also critical!

static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !!read some data
 iTemperatures[1] = !!read some data
}

void main (void)
{
 int iTemp0, iTempi;
 while (TRUE) {
 //Disable interrupts while we use the array
 disable ();
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 Enable interrupts again
 enable ();
 if (iTemp0 != iTemp1)!! Set off howling
alarm;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another shared data problem
example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupts with a timer

• The function
ISecondsSinceMidnight returns the
number of seconds since midnight.

• A hardware timer asserts an
interrupt signal every second,
which causes the microprocessor
to run the interrupt routine
vUpdateTime to update the static
variables that keep track of the
time.

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void)
{
 return ((((iHours * 60) + iMinutes) *
60) + iSeconds);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Where is the problem?

• If the hardware timer interrupts
while the microprocessor is doing
the arithmetic in
ISecondsSinceMidnight, then the
result might be wrong.

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void)
{
 return ((((iHours * 60) + iMinutes) *
60) + iSeconds);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How bad can it be? Very bad!

• Suppose that the time is 3:59:59.

• The function
ISecondsSinceMidnight might read
iHours as 3.

• However, if the interrupt occurs
and changes the time to 4:00:00.

• ISecondsSinceMidnight will read
iMinutes, and iSeconds as 0.

• Returning a value that makes it
look as though the time is 3:00:00,
which is 1 hour off!!!

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void)
{
 return ((((iHours * 60) + iMinutes) *
60) + iSeconds);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

An even worse solution!

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void) {
 disable ();
 return ((((iHours * 60) + iMinutes) *
60) + iSeconds);
 enable ();
}

Why is this so bad?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why is this so bad?

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void) {
 disable ();
 return ((((iHours * 60) + iMinutes) *
60) + iSeconds);
 enable ();
}

• Well... The function
ISecondsSinceMidnight will always
return before enabling the
interrupts.

• Interrupts will never be enabled, so
the time obtained through the
function vUpdateTime will never
change.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Slightly better solution... but still has
problems

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void) {
 long IReturnVal;
 disable ();
 IReturnVal =(((iHours * 60) +
iMinutes) * 60) + iSeconds;
 enable ();
return (IReturnVal);
}

• Suppose that
ISecondsSinceMidnight is called
from inside a critical section
somewhere else in the program

• Critical section means that
interrupts are disabled.

• A bug will be caused since we are
now enabling interrupts inside a
critical section.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Visual representation

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long ISecondsSinceMidnight (void) {
 long IReturnVal;
 disable ();
 IReturnVal =(((iHours * 60) +
iMinutes) * 60) + iSeconds;
 enable ();
return (IReturnVal);
}

disable interrupt

random code #1

enable interrupt

use function
ISecondsSinceMidnight

random code #2

disable interrupt

enable interrupt

return some stuff

• If an interrupt happens sometime
during random code #2, then it will
be processed immediately!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

The “best” solution

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime (void) {
 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0; ++iHours;
 if (iHours >= 24) iHours = 0;
 }
 }
 !!Do other stuff in hardware
}

long lSecondsSinceMidnight (void) {
 long lReturnVal;
 bool fInterruptStateOld;
 fInterruptStateOld = disable (); //are interrupts already disabled?

 IReturnVal =(((iHours * 60) + iMinutes) * 60) + iSeconds;
 if (flnterruptStateOld) { enable (); } //Restore interrupts to previous state

 return (lReturnVal);
}

• If interrupts are already disabled,
don’t disable / enable them again!

• The disable() function not only
disables the interrupts, but it will
also tell you if they are already
disabled.

• A bit slower, than previous code.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupt latency

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupt latency

• Because interrupts are a tool for getting better response from
our systems, and because the speed which an embedded system
can respond is always of interest ...

• How fast does my system respond to each interrupt?

• Interrupt latency is the amount of time it takes for a system
to respond to an interrupt.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How fast does my system respond to
an interrupt?

Depends on 4 factors:

1. The longest period of time where that interrupt is disabled.

2. The time it takes to execute the interrupt routines for
interrupts that are of higher priority than the one in question.

3. How long it takes the microprocessor to stop what it is doing,
do the necessary bookkeeping, and start executing instructions
within the interrupt routine.

4. How long it takes the interrupt routine to save the context and
then run the interrupt code.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Get some timing information

How do I get the times associated with the four factors listed on
the previous slide?

• Read microprocessor documentation.

• Write the code and measure how long it takes to execute.

• Count the instructions of various types and how long each type
of instruction takes.

If I want to make my system to respond faster to interrupts, the
shorter the period during which interrupts are disabled, the
better my response will be.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example #1

Suppose that the requirements for your system are as follows:

• Disable interrupts for 125μsec while you run random code A.

• Disable interrupts for another 250μsec while you some random
code B.

• Whenever some other processor asks for resources, you must give
them within 625μsec.

• It takes 300μsec for your system to give the other processor his
desired resources (interprocessor interrupt routine).

Question: Is it possible to implement this system?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Worst case interrupt latency

• Disable interrupts for 125μsec while
you run random code A.

• Disable interrupts for another 250μsec
while you some random code B.

• Whenever some other processor asks
for resources, you must give them
within 625μsec.

• It takes 300μsec for your system to
give the other processor his desired
resources (interprocessor interrupt
routine).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

We can definitely implement this
system

• Interrupts are disabled in our system
for at most 250μsec.

• The worst case scenario happens when
the longest period when interrupts are
disabled (the 250μsec mentioned
before).

• The interrupt routine needs 300μsec
to run.

• The longest time it can take to run is
300μsec+250μsec = 550μsec.

• This is within the desired response
time of 625μsec.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example #2

• Will this system work with a processor that is half the speed?

• This means all the processing times are doubled: interrupts are
disabled for twice as long, the interrupt service routine takes
twice as long, but the 625-μsec deadline remains the same.

• Will the system meet its deadline? No!

• Interrupts will be disabled for up to 500 μsec at a time, and the
interrupt service routine needs 600μsec to do its work.

• The total of is 1100 μsec, much longer than the 625-μsec
deadline.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example #3

• Some random code requires interrupts to be disabled for 250μsec.

• A network card was added to the system, and its hardware
interrupt takes100μsec to process.

• Whenever some other processor asks for resources, you must give
them within 625μsec.

• It takes 300μsec for your system to give the other processor his
desired resources (interprocessor interrupt routine).

Question: Is it possible to implement this system? It depends...

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Importance of interrupt priorities

• Interrupts disabled for 250μsec.

• A network card interrupt
takes100μsec to process.

• Time to deadline 625μsec.

• Interprocessor interrupt routine
takes 300μsec to process.

Only if I assign a lower priority
to the network card we will be
able to meet the deadline!

In this diagram, the network
card is assigned a higher priority
and the deadline will NOT be

met!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why won’t the deadline be met if the
network ISR has a higher priority?

• In most micro-controllers, only one
thing can be running at the same
time!

• Higher priority means an interrupt
will be executed first.

• If the Network ISR takes 100μsec
to be done, the Processor ISR will
have to wait until done.

• If the Processor ISR has higher
priority, it will be done first, and it
could even interrupt the Network
ISR.

In this diagram, the network
card is assigned a higher priority
and the deadline will NOT be

met!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Polling

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

I/O Systems

• Many devices are operating independently of the processor –
except when communication happens

• We say that these devices are acting asynchronously of the
processor

• The processor must have some way of knowing that something
has changed with the device (e.g., that it is ready to send or
receive information).

• Up till now we discussed interrupts.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Polling is a bad way to check the state
of the device

With polling, the processor continually checks the state of the
device:

This piece of code will loop until x is different than 0.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why is polling so bad?

• In embedded systems, we are typically managing many devices at
once.

• We can potentially be waiting for a long time before the state
changes.

• We call this busy waiting.

• The processor is wasting time that could be used to do other
tasks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

I/O By Polling: An Alternative

One alternative is to do something while we are waiting...

Polling works great ... but:
• We have to guarantee that our “something else” does not take too long
(otherwise, we may miss the event)

• Depending on the device, “too long” may be very short

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

When to use polling instead of
interrupts?

In generally we avoid polling I/O like the plague!

However, we use polling approach for situations in which:

• We don’t want to deal with shared data problems in interrupts.

• We know the event is coming very soon (nsec to μsec range).

• We must respond to the event very quickly (nsec to μsec range).

