
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arduino and basic C review

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Course requirements

•Arduino Uno R3 - $29.95

•USB Cable A to B - $3

•Access to a computer - Either Mac or PC is fine

• Download free Arduino IDE from www.arduino.cc

http://www.arduino.cc
http://www.arduino.cc

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Introduction to Arduino development

• This topic is a very basic introduction to the Arduino
development and the prototype board.

• This is so you can refresh your basic C programming skills.

• In the process you will also become comfortable with the
Arduino prototype board.

• In future classes we will be delving deeper into the architecture
of the ATMega so we can implement and study real time systems.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arduino

• This is the prototype board we will be
using in our class.

• Broadly speaking, any embedded
program can:

1.Turn ON/OFF pins.

2.Read data from pins.

Pins

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Digital I/O

•Input/Output (I/O) is done through pins.

•Input = read physical world data.

•Output = write data to the physical world.

•You insert a wire into a pin and connect it
to something else.

•We can program a pin to be input OR
output.

•Digital pins have two values: high (5 Volts)
or low (0 Volts).

Digital I/O pins

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Analog I/O

•Analog I/O has a range of numbers.

•Output : 0 ... 255 (256 voltage steps from 0
to 5V).

•Input: 0 ... 1023 (1024 voltage steps from 0
to 5V).

•Analog input pin: we can use it for example
to determine the distance of an object via
infra-red sensor.

•Analog output pin: we can use it for
example to set speed of a motor or the
brightness of a LED.

Analog I/O pins

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pulse Width Modulation

•Some digital ports can be programmed to
output analog signals.

•We enable those ports for output with
pulse width modulation (PWM).

•PWM is obtained by varying between HIGH
and LOW at the appropriate interval of
time.

Digital pins with PWM

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Dimming an LED

•Let me specify pin 7 to be
an output pin (5V).

•LED will be ON.

•If turn pin 7 ON and OFF
very fast, our eyes will see
the light dimming dimming.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Other board components

TX / RX pin

USB Port
(to program and 5V power)

9V Power
(actually it will work from

6V to 12V)

CPU
(ATmega328P)

Reset Button

16 MHz
Oscillator

Atmega16U2
(USB-to-serial

converter)

In-circuit serial
programming (ICSP

used to program
bootloader)

http://www.atmel.com/dyn/products/product_card.asp?PN=ATmega328P
http://www.atmel.com/dyn/products/product_card.asp?PN=ATmega328P

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arduino Uno specifications

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Bootloader

•The bootloader is a small piece of software that is
burned onto the chips that come with your Arduino
boards. It allows the user to upload programs to
the board without external hardware.

•When you reset the Arduino board, it runs the
bootloader (if present) and digital pin 13 is pulsed.

•The bootloader waits a few seconds for data to
arrive from the the USB port. Seconds later, the
bootloader launches the newly-uploaded program. If
no data arrives from the USB port, the bootloader
launches whatever program was last uploaded onto
the chip.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Power pins

•VIN - You may provide a regulated
input voltage to the Arduino board
as opposed to 5 volts from the USB
connection or other regulated
power source.

•5V - When power is provided to the
board, this pin has 5V (reference to
GND pin)

•3V3 - A 3.3 volt supply generated by
the on-board regulator (reference to
GND pin). Maximum current draw
is 50 mA.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Battery powered

•First, program sketch
into Arduino

•Unplug USB cable

•Plug in power
(7-12VDC)

•Power LED lights up. It
works!

•Reverse steps to
reprogram

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Battery powered

•Plugging into the sockets is
kind of fiddly

•Better to plug into the
power jack

•Works great, but requires a
little soldering

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Other pins

•Digital Pin 2 and 3 can be
used as external
interrupts (trigger an
interrupt on a low value, a
rising or falling edge, or a
change in value).

•AREF - Reference voltage
for the analog inputs.

•Reset - Bring this line
LOW to reset the micro-
controller.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Polyfuse

•What is that funny looking chip?

•Its a resettable polyfuse that
protects your computer's USB
ports from shorts and over-
current. If more than 500 mA is
applied to the USB port, the fuse
will automatically break the
connection.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

AMS1117 Voltage regulator

•Takes in a 9V voltage as an input

• The output is a regulated 5V

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How fast is 16 MHz ?

•Every micro-controller has a clock

•f = 1 / T (frequency = 1 / clock period)

•16 x 10^6 Hz = 1 / T <=> T = 62.5 ns

• But can you turn ON and OFF a light
every 62.5 ns?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why is Arduino so successful?

•Improvement over other micro-controllers for hobby usage:
Parallax Basic Stamp, Netmedia's BX-24, Phidgets, MIT's
Handyboard ...

•Inexpensive

•Cross-platform

•Simple, clear programming environment: It uses a simplified set
of libraries (called wiring) that are built over C

•Open source and extensible software/hardware

•Arduino Shields

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arduino shields

•Shields are boards that can be plugged on top of the Arduino

•They extend its capabilities.

•Internet connectivity, wireless communication, motor controls

Ethernet connectivity
GPS

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Program example using Arduino
Wiring libraries

int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts

void setup() {

 // initialize the digital pin as an output:

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 digitalWrite(ledPin, HIGH); // set the LED on

 delay(1000); // wait for a second

 digitalWrite(ledPin, LOW); // set the LED off

 delay(1000); // wait for a second

}

Wiring libraries make
programming much easier,
but we lose have a lot of
internal micro-processor

control.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

WARNING

•Wiring libraries are only compatible with the micro-controller
that is inside the Arduino board (Atmel ATMega).

•We will only use the Wiring libraries in order to refresh you
C-programming skills and introduce the development
environment.

•In some future topics, we will interact directly with the micro-
controller with pure ANSI-C so that our code language is
compatible with other micro-controllers.

•We will also look at the ATmega328P architecture in detail.

http://www.atmel.com/dyn/products/product_card.asp?PN=ATmega328P
http://www.atmel.com/dyn/products/product_card.asp?PN=ATmega328P

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arduino IDE

• Simple to use

• Open Source (Free)

• Programming style similar
to C

• You can download it from
www.arduino.cc

http://www.arduino.cc
http://www.arduino.cc

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arduino programming flow

Connect USB to Board

P13 Blinks Fast

Upload Code

Code Executes

Write Code in IDE

Compile to Verify

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Anatomy of a “sketch”

Loop()

Global Variables

Setup()

Declare global variables on top

Code that is executed only once at
beginning (eg: set pins)

Code that runs repeatedly, after
setup()

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Programming in the Arduino
environment using Wiring.

Language is standard C.

Wiring library has many useful functions:

• pinMode() – set a pin as input or output

• digitalWrite() – set a digital pin high/low

• digitalRead() – read a digital pin’s state

• analogRead() – read an analog pin

• analogWrite() – write an “analog” value

• delay() – wait an amount of time

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to write a “Hello world”
program?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

“Hello World” program

void setup()
{
 Serial.begin(9600); //start serial comm.
}

void loop()
{
 Serial.print("Hello World!\n\r");
 delay(2000); //wait 2sec
}

Click here for a
serial connection

Visualizing the
serial

connection...

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to use digital I/O pins

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

“Hello World” with a LED

int ledPin = 13; // LED connected to pin 13

void setup()
{

//start serial port at 9600 bps:
Serial.begin(9600);

}

void loop()
{

Serial.print("Hello World!\n\r");
digitalWrite(ledPin, HIGH);
delay(1000);
digitalWrite(ledPin, LOW);
delay(1000);

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Reading input button

int pinUT=5;
int data=0;

void setup()
{
 //pin5 in set to receive data
 pinMode(pinUT, INPUT);
 //initiate serial communication
 Serial.begin(9600);
}

void loop() {
 data=digitalRead(pinUT);
 Serial.println(data);

//wait for a second
 delay(1000);
}

Serial monitor will report “1”
when button is pressed.

It will report “0” otherwise.

connect to
digital pin 5

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to establish a serial
connection

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Serially controlled LED

•It is possible to control the Arduino by a serial connection.

•Every time you press a key, it will assign a decimal value
(ASCII).

•That value is sent to the Arduino through a serial connection.

•... But aren’t we using a USB cable?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

ASCII Table

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Character ‘a’ will turn LED ON

int ledPin = 13; // LED connected to digital pin 13
int inByte = 0;
void setup()
{
 pinMode(ledPin, OUTPUT); // sets the digital pin as output
 Serial.begin(9600); // initiate serial communication
}

void loop()
{
 while (Serial.available()>0) { inByte = Serial.read(); }
 Serial.println(inByte); //print contents of inByte

if (inByte==97){ digitalWrite(ledPin, HIGH);} //sets the LED ON

else{ digitalWrite(ledPin, LOW); } //sets the LED ON

delay(1000); //wait 1 second

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Serial I/O

pressed ‘s’

pressed ‘d’
pressed ‘a’ and
LED turns ON

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to use analog I/O pins

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

PWM Signals

•Pulse Width Modulated (PWM) Signals.

•μCs cannot generate analog output, but we can fake it by
creating digital signals with different “duty cycles” - signals with
different pulse widths.

•To the analog world the different duty cycles create different
effective voltages.

•Note #1: Analog output can only happens on digital pins
through PWM.

•Note #2: Analog input can only happen on analog pins!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

PWM Signals

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Analog output: varying LED brightness

Code Example:

Note:
0 = 0V
255 = 5V

•Analog I/O has a range of values.

•Output: 0 ... 255 (256 voltage steps
from 0 to 5V).

•Input: 0 ... 1023 (1024 voltage steps
from 0 to 5V).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Sample PWM / “Analog” write code

int outputPin = 9; //output pin (led)

void setup()
{
 pinMode(ledPinA, OUTPUT);
}

// the loop() method runs over and over again,
void loop()
{

//analogValue of 255 will output 5V on pin 9
//analogValue of 0 will output 0V on pin 9
int analogValue=255;

 analogWrite(outputPin,analogValue);

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Analog input

Arduino splits analog signals
into digital points

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Analog input

•Many states, not just two (HIGH/LOW)

•Number of states (or values, or “bins”)
is resolution

•Common computer resolutions:

•8-bit = 2^8 = 256 values

•16-bit = 2^26 = 65,536 values

•32-bit = 2^32 = 4,294,967,296 values

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Analog input

•Arduino (ATmega328) has six ADC inputs (ADC = Analog to
Digital Converter)

•Reads voltage between 0 to 5 volts

•Resolution is 10-bit (1024 values)

•In other words, 5/1024 = 4.8 mV smallest voltage change you
can measure

•Examples of varying voltage inputs: Temperature sensors, light
sensors, ...

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Potentiometers

With a potentiometer we can create an analog input

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Potentiometers

Moving the knob is like moving where the arrow taps the
voltage on the resistor

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Voltage divider

• Potentiometers are example of a voltage divider

• Voltage divider splits a voltage in two

• Same as two resistors, but you can vary them

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Sample analog read code

int ledPinA = 9; //output pin (led)
int sensorPinA = 2; // input pin for the potentiometer
int sensorValueA = 0; //analog valueA

void setup() {
 Serial.begin(9600);
 pinMode(ledPinA, OUTPUT);
}

// the loop() method runs over and over again,
void loop()
{
 sensorValueA = analogRead(sensorPinA);
 digitalWrite(ledPinA, HIGH);
 Serial.println(sensorValueA);
 delay(sensorValueA);
 digitalWrite(ledPinA, LOW);
 delay(sensorValueA);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Sensing the dark:
photocells

•aka. photoresistor, light-dependent resistor

•A variable resistor

•Brighter light == lower resistance

•Photocells you have range approx. 0-10k-1M

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Photocell circuit

•Implementation is very similar to
a potentiometer

•Pin A2 is the input to an analog
port.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Resistive sensors

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Resistive sensor code

int sensorPinA = 2; // input pin for the
potentiometer
int sensorValueA = 0; //analog valueA

void setup() {
 Serial.begin(9600);
}

// the loop() method runs over and over again,
void loop()
{
 sensorValueA = analogRead(sensorPinA);
 Serial.println(sensorValueA);
 delay(100);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

RGB LEDs

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

RGB LEDs are perfect for analog
output pins

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Here is an example of RGB LED usage

http://www.youtube.com/watch?v=3K8i0JQzx2w&

16x16x16 LED Cube

http://www.youtube.com/watch?v=3K8i0JQzx2w&
http://www.youtube.com/watch?v=3K8i0JQzx2w&

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Other sample introductory
code

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simulating sound waves

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Make a theremin

•“ooo-weee-ooooo”

•The original spooky sound machine

•Works by measuring your body’s electric
field

•We’ll use a resistive sensor in lieu of RF

•http://www.youtube.com/watch?
v=pSzTPGlNa5U

http://www.youtube.com/watch?v=pSzTPGlNa5U
http://www.youtube.com/watch?v=pSzTPGlNa5U
http://www.youtube.com/watch?v=pSzTPGlNa5U
http://www.youtube.com/watch?v=pSzTPGlNa5U

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Theremin

• Read an analog signal generated
through a resistive sensor

• We interpret the digitized value
from the A/ D conversion as the
period of the sound wave we want
to generate

• Generate one period of the sound
wave, output it to the speaker and
then sample the input again

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Theremin code

int SpeakerPin = 9; //output pin (led)
int sensorPin = 2; // analog input pin
int sensorValue = 0; //analog value

void setup() {
 Serial.begin(9600);
 pinMode(SpeakerPin, OUTPUT);
}

void loop()
{

updateRate=50;
 sensorValue = analogRead(sensorPin);
 sensorValue = sensorValue*2;
 Serial.println(sensorValue);

for (int i=0; i<updateRate ; i++)
{

digitalWrite(SpeakerPin,HIGH);
delayMicroseconds(sensorValue);
digitalWrite(SpeakerPin,LOW);
delayMicroseconds(sensorValue);

}
}

• Variable updateRate is number of
cycles sound will play.

• Play with sensorValue &
updateRate variables to alter
sensitivity, pitch and timbre.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Infrared (IR) emitter and detector

• You can’t see infra-red light but
you can detect it.

•IR detectors / emitters are used
in remote controls

•The Infra-red detector behaves
like a transistor.

•No IR detection: transistor will
act like an open circuit with
output = HIGH.

•IR detection: some current will
flow to ground, so output <
HIGH.

An infra-red detector is a
photodetector that reacts to infrared

(IR) radiation.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

IR emitter and detector code

int IR_input_pin = 5; //analog pin
int IR_data=0;

void setup() {
 Serial.begin(9600);
}

void loop()
{
 IR_data=analogRead(IR_input_pin);
 Serial.println(IR_data);
 delay(1000);
}

1. We can implement the emitter
and detector circuits in two
separate prototype boards.

2.IR emitters and detectors are
very sensitive to current.

3.Connect the detector output to
your Arduino analog pin 5.

4. Load the code, and you will
detect a voltage on pin 5.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Basic C review
Loops, variables, arrays

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Hello World

1.Arduino programs MUST have the setup
and loop functions.

2.Functions always begin with { and end
with }.

3.When the code is uploaded to the board,
whatever is in the setup function will be
executed first, and only once.

4.After executing the setup function, the
program flow will go to the loop function,
which will repeat until there is power.

5.Serial.print and Serial.println both print
stuff to the screen. Serial.println will
automatically insert a line feed.

void setup() {
 Serial.begin(9600);
 Serial.print("Hello World\n");
 Serial.println("Hello World");
}

void loop()
{
}

Brackets
define code blocks

Brackets
define code blocks

Note: Everything that is not a
code block must end with a ;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Commenting your code

1.It is considered good programming
style to comment code.

2. Comments can be written
anywhere in the code: any characters
between /* and */ are ignored by
the compiler and can be used to
make the code easier to understand.

3.Comments can also be written after
a //

4.Also, make sure to insert tabs in
your code to make it align inside
functions.

/*
This is a very long comment
that takes multiple lines...
*/

void setup() {
 Serial.begin(9600);
 Serial.print("Hello World\n");

//this is a small comment
 Serial.println("Hello World");
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C doesn’t care much about spaces

1.Both of these programs are exactly the same as the original as far as
your compiler is concerned.

2.Note that words have to be kept together and so do things in quotes.

3.How we SHOULD lay out our C program to make it look nice?

void setup() { Serial.begin(9600);
Serial.print("Hello World\n");
Serial.println("Hello World");} void
loop(){}

void setup() {
 Serial.begin(9600);
 Serial.print("Hello World\n");
 Serial.println("Hello World");
}
void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Bad Coding Style

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Basic C operands

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Variables

1.A variable is a place to store a piece
of data. It has a name, a value, and a
type.

2.We must declare the type of every
variable we use in C.

3.Every variable has a type (e.g. int)
and a name.

4.Declarations of types should always
be together at the top of main or a
function.

5.Main types of variables are boolean,
char, byte, float, string, ...

/*
creates a variable whose name is pin,
whose value is 13, and whose type is
int.
*/

int pin = 13;

void setup() {
 Serial.begin(9600);
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Naming variables

1.Variables in C can be given any name
made from numbers, letters and
underlines which is not a keyword
and does not begin with a number.

2.A good name for your variables is
important.

3.Ideally, a comment with each
variable name helps people know
what they do.

4.Good programmers use well chosen
variable names and comments on
variables.

/*
creates a variable whose name is pin,
whose value is 13, and whose type is
int.
*/

int pin = 13;

//naming a variable abc is cryptic
int abc = 12;

void setup() {
 Serial.begin(9600);
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

ASCII Table

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Variable types: int & char

1.Integer (int) variables take 16 bits,
and are able to store a number
(-32,768 to 32,767).

2.Character (char) variables take 8
bits of memory and stores a
character value. The can have
decimal values from -128 to 127.

3.Refer to the ASCII table to assign
the proper variable value.

/*
creates a variable whose name is pin,
whose value is 13, and whose type is
int.
*/

int pin = 13;

/*
these next two variables are equivalent
*/
char myChar_1 = 'A';
char myChar_2 = 65;

void setup() {
 Serial.begin(9600);

 Serial.println(pin);
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Floating point variable: float

1.float is a datatype for floating-point
numbers, a number that has a decimal
point.

2.Floating-point numbers are often used to
approximate analog and continuous values
because they have greater resolution than
integers.

3.Floating-point numbers can be as large as
3.4028235E+38 and as low as -3.4028235E
+38. They are stored as 32 bits (4 bytes)
of information.

4.Floats have only 6-7 decimal digits of
precision. That means the total number of
digits, not the number to the right of the
decimal point.

 int x;
 int y;
 float z;

void setup() {
 Serial.begin(9600);

 /*
 y will contains 0
 ints can't hold fractions
 */

 x = 1;
 y = x / 2;
 z = (float)x / 2.0;
 // z now contains .5

 Serial.println(x);
 Serial.println(y);
 Serial.println(z);

}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Beware of the floating point

1.Floating point numbers are not exact, and
may yield strange results when compared.

2.For example 6.0 / 3.0 may not equal 2.0.
You should instead check that the
absolute value of the difference between
the numbers is less than some small
number.

3.Floating point math is also much slower
than integer math in performing
calculations

4.Programmers often go to some lengths to
convert floating point calculations to
integer math to increase speed.

float myfloat;
float sensorCalbrate = 1.117;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Variable type: double

1.Double precision floating point
number. Occupies 4 bytes.

2.The double implementation on the
Arduino is currently exactly the
same as the float, with no gain in
precision.

3.We can store larger numbers on it.

double sensorCalbrate = 22231.117;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

More variable types

1.unsigned means that an int or char
value can only be positive. signed
means that it can be positive or
negative.

2.long means that an int variable has
more capacity short means they
have less.

3.const means a variable which
doesn't vary – useful for physical
constants or things like PI.

signed int myInt = -12;
unsigned int myInt = 12;

long longVar = 1234;
short shortVar = 10;

const float PI = 3.14

void setup()
{
 Serial.begin(9600);
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Operations on Variables

• With two variables we can +, -, * and /

• ++ (add one) e.g. increment++;

• -- (subtract one) e.g. countdown--;

• += (add to a variable) e.g. a+= 5;

• -= (subtract from variable) e.g. num_living-=
num_dead;

• *= (multiply a variable) e.g. no_bunnies*=2;

• /= (divide a variable) e.g. fraction/= divisor;

• (x % y) gives the remainder when x is divided by y

➡remainder= x%y; (ints only)

int intA = -12;
int intB = 12;
float floatC = 15.11;
float floatD = -22.11;

int intRes = 0;
float floatRes = 0;
const float PI = 3.14

void setup()
{
 Serial.begin(9600);

 floatRes = floatC + floatD;
 intRes = intA * intB;
 intRes++; //intRes = intRes +1
 floatRes *= 3;
 floatRes /= PI;
 PI = floatRes + floatC; //ERROR!

}

void loop(){}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Casting between variables

• Recall the trouble we had dividing ints

• A cast is a way of telling one variable type
to temporarily look like another.

• By using (type) in front of a variable we
tell the variable to act like another type
of variable.

• We can cast between any type. Usually,
however, the only reason to cast is to
stop ints being rounded by division.

int a = 3;
int b = 5;

float floatRes = 0;

void setup()
{
 Serial.begin(9600);

 floatRes = a/b;
Serial.println(floatRes);

 floatRes = (float)a/(float)b;
Serial.println(floatRes);

}

void loop(){}

Cast ints a and b to be floats!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Summary of variables

• boolean : 1 bit (true or false)

• char : 8 bit (-128 to 127)

• byte or unsigned char: 8 bit (0 to 255)

• int : 16 bit (-32,768 to 32,767)

• word or unsigned int : 16 bit (0 to 65535)

• long: 32 bit (-2,147,483,648 to 2,147,483,648)

• unsigned long : 32 bit (0 to 2^32 - 1)

• float : 32 bits (3.4028235E+38 to -3.4028235E+38)

• double : same as float in the Arduino environment

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

If statements

With if statements we are comparing two variables!

If (variable comparison operation variable) {
some code here

}
else {

some code here
}

Where comparison operation can be:
• > (greater than)
• < (less than)
• >= (greater than or equal)
• <= (less than or equal)
• == (equals)
• != (not equals)

void setup()
{
 Serial.begin(9600);

int a = -12;
int b = 12;

if (a >= b)
{ Serial.println (“>=”); }

if (a == b)
{ Serial.println (“==”); }

if (a < b)
{ Serial.println (“<”); }

}

void loop(){}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Reading serial data in different formats

• We can print out the contents
of the readKey variable in
different formats.

• We can print the character
(BYTE), its binary value (BIN)
or its decimal value (DEC).

int readKey = 0;
void setup()
{
//initiate serial communication
Serial.begin(9600);
}

void loop()
{
while (Serial.available()>0)
{
readKey = Serial.read();
}

//report what key was printed
Serial.println(readKey, BYTE); //prints "N"
Serial.println(readKey, BIN); //prints "1001110"
Serial.println(readKey, DEC); //prints "78"

//wait half a second
delay(500);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Functions

• The function is one of the most basic things to
understand in C programming.

• A function is a sub-unit of a program which
performs a specific task.

• We have already (without knowing it) seen
many functions from the arduino C library –
Serial.println(), setup() and loop().

• We need to learn to write our own functions.

• Functions take arguments (variables) and may
return an argument. Think of a function as
extending the C language to a new task.

float valA; float valB;

void setup() { Serial.begin(9600); }

float return_maximum(float vA, float vB)
{
 if (vA > vB) { return (vA); }
 else { return (vB); }
}

void loop()
{
 //random number from 10 to 19
 valA = random(10, 20);
 //random number from 0 to 19
 valB = random(0, 20);

 //calling the function

float res = return_maximum(valA,valB);
 Serial.println(res);

 delay(1000);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Functions calling functions

• Once you have written a function, it
can be accessed from other functions.

• We can therefore build more complex
functions from simpler functions

float valA=12; float valB=3;

float return_minimum(float vA, float vB)
{
 if (vA > vB) { return (vB); }
 else { return (vA); }
}

float return_number(float vA, float vB)
{

float value = return_minimum(vA,vB);
 if (vA > vB) { return (vA + value); }
 else { return (vB - value); }
}

void setup() {
Serial.begin(9600);
float res=return_number(valA,valB);

}

void loop()
{
 (...)
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Void functions

• A function doesn't have to take or return
arguments. We prototype such a function
using void.

• A function can take any number of arguments
mixed in any way.

• A function can return at most one argument.

• When we return from a function, the values
of the argument HAVE NOT CHANGED.

• We can declare variables within a function
just like we can within loop() - these variables
will be deleted when we return from the
function

float valA=12.5; float valB=16.1;

void setup() { Serial.begin(9600); }

float return_maximum(float vA, float vB)
{
 if (vA > vB) { return (vA); }
 else { return (vB); }
}

void print_hello_message()
{
 Serial.println(“hello world”);
}

void loop()
{
 //calling the function

float res = return_maximum(valA,valB);
Serial.println(res);

 print_hello_message();
 delay(1000);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Where do functions go?

• loop() is a function just like any other.

• Functions must be entirely separate from
each other.

• Functions must be declared on before they
are called. Its not a bad idea to declare
them all the way on top.

• You can also declare functions on external
files.

float valA=12.5; float valB=16.1;

void setup() { Serial.begin(9600); }

float return_maximum(float vA, float vB)
{
 if (vA > vB) { return (vA); }
 else { return (vB); }
}

void print_hello_message()
{
 Serial.println(“hello world”);
}

void loop()
{
 //calling the function

float res = return_maximum(valA,valB);
Serial.println(res);

 print_hello_message();
 delay(1000);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Variable scope

• The scope of a variable is where it can
be used in a program

• Normally variables are local in scope -
this means they can only be used in
the function where they are declared
(main is a function)

• We can also declare global variables.

• If we declare a variable outside a
function it can be used in any function
beneath where it is declared

• Global variables are A BAD THING...
Try to minimize their use.

float valA=12.5; float valB=16.1;

void setup() { Serial.begin(9600); }

void print_variable_scope()
{

int intVariable=10;
 Serial.println(intVariable);

 Serial.println(valA); //valA is global

//ERROR! Variable res is out of Scope
Serial.println(res);

}

void loop()
{
 print_variable_scope();

float res = 12.5;
Serial.println(res);
//ERROR! intVariable is out of Scope
Serial.println(intVariable);

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Loops

• Two of the most used workhorses in C are
the for and while loops.

• Which is clearer in this case? A for or
while loop?

For Loop
for (initialiser ; condition ; increment) {
 code;
}

While Loop
initialiser;
while (condition) {
 code;
 increment;
}

void setup() { Serial.begin(9600); }

void loop()
{

int i;

//for loop
 for (i=0; i < 10 ; i++)
 {
 Serial.println(i);
 }

//while loop
 while (i<10)
 {
 Serial.println(i);
 i++;
 }
 delay(1000);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why are global variables bad?

• In this code we want to print a matrix
of 5x5, filled with stars.

• This code will only print one row of
five stars!

int i;

void print_stars()
{
 for (i=0 ; i<5 ; i++)
 {
 Serial.print("*");
 }
 Serial.print("\n");
}

void setup()
{
 Serial.begin(9600);
 for (i=0; i < 5 ; i++)
 { print_stars(); }
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Avoiding a global variable

• In this code we want to print a matrix
of 5x5, filled with stars.

• This code will only print what we
want...

void print_stars()
{

int i;
 for (i=0 ; i<5 ; i++)
 {
 Serial.print("*");
 }
 Serial.print("\n");
}

void setup()
{
 int i;
 Serial.begin(9600);
 for (i=0; i < 5 ; i++)
 { print_stars(); }
}

void loop()
{
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define and const

• The #define preprocessor
command replaces one thing with
another before compilation.

• Now, anywhere in the program
we use PI or GRAV_CONST it
will be replaced with the
replacement string BEFORE the
real compiler starts (that's why
we call it pre-processing)

• Const variable types will prevent
its modification!

const int pin = 13;
#define PI 3.14
#define GRAV_CONST 9.807
#define HELLO_WORLD "Hello World!\n"

void setup() {
 Serial.begin(9600);
}

void loop()
{

float res = 10 * PI;
Serial.println(res);
Serial.print(HELLO_WORLD);

 //ERROR! Can’t modify const variable;
 pin = pin+2;
 Serial.print(pin);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Creating an array

• An array is a collection of variables that are accessed with an index number.

• All of the methods below are valid ways to create (declare) an array.

• int myInts[6];

• int myPins[] = {2, 4, 8, 3, 6};

• int mySensVals[6] = {2, 4, -8, 3, 2};

• char message[6] = "hello";

• You can both initialize and size your array, as in mySensVals. Note that when
declaring an array of type char, one more element than your initialization is
required, to hold the required null character (“\0).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Accessing an array

• Arrays are zero indexed, that is, the first element of the array is at
index 0,

• It also means that in an array with ten elements, index nine is the
last element. Hence, if int myArray[10]={9,3,2,4,3,2,7,8,9,11};

- myArray[9] contains 11

- myArray[10] is invalid and contains random stuff

- To assign a value to an array:

- mySensVals[0] = 10;

• To retrieve a value from an array:

- x = mySensVals[4];

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Array + loop example

• In this example, I create a #define
with the value 10

• Then I create an array with 10
memory elements of type int

• I proceed to fill it with 10
random values.

• Finally, I calculate the variable of
those 10 values.

#define ARRAYPOS 10
void setup()
{
 Serial.begin(9600);
 int myArray[ARRAYPOS];

 for (int i=0; i < ARRAYPOS ; i++)
 {
 myArray[i]=random(0,100);
 Serial.print(myArray[i]);Serial.print(" ");
 }
 Serial.print("\n");

 float sum=0;
 for (int i=0; i < ARRAYPOS ; i++)
 { sum=sum + myArray[i]; }
 sum = sum / ARRAYPOS;
 Serial.print("Average = ");
 Serial.println(sum);
}
void loop(){}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

2D Array

• 2D arrays are very similar to 1D arrays.

• I can initialize the array with something like:

float array1 [10][5];

• That will create a 2D array with 10 rows and 5 columns of a float
datatype.

• I can also initialize the contents of the 2D array as follows:

float array2 [3][2] ={ {10,20},{3,4},{40,0}};

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Other useful Arduino (wiring)
functions

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arduino map() function

•map(value, fromLow, fromHigh, toLow, toHigh)

•Extremely useful function: Re-maps a number from one range to another.

• That is, a value of fromLow would get mapped to toLow, a value of
fromHigh to toHigh, values in-between to values in-between, etc.

• Example:

• Map an analog value (0 to 1023) to 8 bits (0 to 255)

void setup() {}

void loop()
{
 int val = analogRead(0);
 val = map(val, 0, 1023, 0, 255);
 analogWrite(9, val);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

random() function

•The random function generates
pseudo-random numbers.

•Syntax:

•random(max)

•random(min, max)

 void loop() {
 int randNumber;
 // print a number from 0 to 299
 randNumber = random(300);
 Serial.println(randNumber);

 // print a number from 10 to 19
 randNumber = random(10, 20);
 Serial.println(randNumber);

 delay(50);
}

Code Example:

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Controlling Arduino From Other
Programs

•Any program on the computer, not just the Arduino software,
can control the Arduino board

•On Unixes like Mac OS X & Linux, even the command-line can
do it:

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interfacing with
Seven Segment Displays

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

• One of the old, but simpler methods of displaying
numeric information is to use one or more 7-
Segment numeric displays connected to your board.

• A seven segment display is composed of LED seven
elements.

• Individually on or off, they can be combined to
produce simplified representations of the arabic
numerals.

• In most applications, the seven segments are of
nearly uniform shape and size.

• The numbers are usually arranged in an slanted
arrangement, which aids readability.

7-Segment LED Displays

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

• The segments of a 7-segment display are referred
to by the letters A to G.

• Some displays have the optional decimal point,
used for the display of non-integer numbers.

• Circuit connections vary from different
manufacturers.

7-Segment LED Displays

http://en.wikipedia.org/wiki/Decimal_point
http://en.wikipedia.org/wiki/Decimal_point

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

int pinId[7]={4,7,9,10,5,6,8};
int readKey=-1;

void setup()
{
 for (int i=0; i<7; i++)
 { pinMode(pinId[i],OUTPUT); }
 Serial.begin(9600);

 for (int i=0; i<7; i++)
 digitalWrite(pinId[i],HIGH);
}

void loop()
{
 while (Serial.available()>0)

readKey = Serial.read();
 if (readKey=='0')
 {
 char data={B11000000};
 for (int i=0; i<7; i++)
 digitalWrite(pinId[i],bitRead(data,i));
 }

 if (readKey=='1')
 {
 char data={B11111001};
 for (int i=0; i<7; i++)
 digitalWrite(pinId[i],bitRead(data,i));
 }
 readKey=-1;
}

Seven-segment
display interface

code
bitRead() - Reads a bit of a number
Syntax - bitRead(x, n)

Parameters:
x: the number from which to read
n: which bit to read, starting at 0 for the
rightmost bit

bitWrite() - Writes a bit of a number
Syntax - bitWrite(x, n,b)

Parameters:
x: the number from which to read
n: which bit to read, starting at 0 for the
rightmost bit
b: boolean value

