
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointers and Arrays
Reference: Russell Chapter 2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why do we need to learn this (again)?

• Pointers and Arrays are a bit tricky and we need to understand
them if we want to implement queues and more advanced
structures.

• Some of the RTOS code we will be using uses these structures
quite often.

• Since we are dealing with embedded systems with limited
resources, its always a good idea to learn how to carefully
dynamically allocate memory for uses.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a pointer?

A pointer is a variable that contains an address, usually of
another variable, but it can be anything in the addressable space.

Memory, in general, is just a block of addressable bits that may be
manipulated in various-sized groups, but the bits are all physically
the same.

Then, a pointer is a group of cells (usually 2 or 4 8-bit cells) that
holds an address.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointer example

Let r be a pointer that points to L, q be a pointer that points to
S, and p be a pointer that points to C.

Let S be a 16-bit short, L be a 32-bit long, and C be an 8-bit
char. In this example, pointers are 32-bit variables meaning the
processor has 32-bit addressable space.

An example of a schematic view of memory. The
smallest division represents one 8-bit memory location.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Unary operators: & and *

• The amount of space reserved for any pointer is the same, no
matter to what type the pointer is pointing.

• The way to make the pointer point to some variable is via the
operator &, which gives the address of the label on its right-
hand-side.

• To access the contents of a variable using a pointer is via the
operator *, which is called the dereferencing operator.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example

p = &C;
q = &S;
r = &L;

• p is the address of variable C
• q is the address of variable S
• r is the address of variable L

&r is the address of the pointer r
&q is the address of the pointer q

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another example

p = &c;

c = 0;

*p = 10;

• p contains the address of variable c.

• p must then be a pointer.

• Variable c will now have the value 0.

• I go to the address of the pointer p and
set it to 10.

• Variable c will now have the value of 10.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to declare pointers?

• To declare a pointer, just add the * symbol to the left of the
variable name.

• char *p;

• short *q;

• long *r;

•Don’t forget that the space allocated to hold p, q and r is all the
same (usually 32-bits on modern microprocessors), but what
they point to is different.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointer precedence

• The operators *, &, ++ and -- all have the same level of operator
precedence (which is very high).

•When the compiler parses a line of source code, it resolves
operators with the same precedence from right-to-left.

• Thus, the statement *p++; will have a very different result
compared to (*p)++;

• *p++ => increments the address stored in p first, then reads the
contents of the address which p++ is pointing to.

• (*p)++ => reads the dereferenced address first and increment
the resulting value without changing the address stored in p.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Precedence examples

Assume that:

• char c = 5;

• char *p;

• p = &c;

address of variable c is 100

‣ Remember *p will print out the contents of the variable that p
is pointing to.
‣ *p += 1 is the same as *p = *p +1

contents of address101 is 0

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Memory map example

• Consider the following code:

• Assume compiler assigns memory up
from 0x3000. Also assume that an integer
is 32 bits (4 bytes). We can chow each
byte of memory as it would be assigned
by the compiler.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Memory map example

• 32 bits = 322 = 2016 = 0x0020
• 0x2F = 0000 0000 0010 11112 = 0 0 2 F

j

pa 3001

3000

x x x x

a x x x x3002

b 3003 0 0 2 F

j

pa 3001

F200

3 0 0 0

a 0 0 0 33002

b 3003 0 0 2 F
Executable code

Assuming a 32 bit address space

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointers in Arduino

void setup(){}

void loop()
{
int myInt;
float myFloat;
int* intPtr = &myInt;
float* floatPtr = &myFloat;

int szint = sizeof(myInt);
int szflt = sizeof(myFloat);

printf("intPtr = %d\n", (int)intPtr);
printf("intPtr+1 = %d\n", (int)intPtr+1);
printf("fltPtr = %d\n", (int)floatPtr);
printf("fltPtr++ = %d\n", (int)floatPtr++);
}

• This compiles just fine (after all
its pure ANSI-C

• However nothing will show up
in the serial monitor, since the
microprocessor does not know
what to do with printf.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointers in Arduino

void setup() { Serial.begin(9600); }
void loop()
{
char myChar;
float myFloat;
int myInt,myInt2;

char* charPtr = &myChar;
float* floatPtr = &myFloat;
int* intPtr = &myInt;
int* intPtr2 = &myInt2;

Serial.print("address of myChar = ");
Serial.println(int (charPtr));
Serial.print("address of myFloat = ");
Serial.println(int (floatPtr));
Serial.print("address of myInt = ");
Serial.println(int (intPtr));
Serial.print("address of myInt2 = ");
Serial.println(int (intPtr2));

while (1);
}

• Slightly more interesting example of
pointers in Arduino.
• Integers and floats require 16 bits,
Chars require 8 bits. That is why myChar
and myInt are separated by 8 bits (or 1
byte), while myInt2 and myFloat are
separated by 16 bits (or 2 bytes).

ATmega328P is an
8bit processor

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Historical example: IBM-PC 80

• This computer had a 80 col x 40 row
display buffer (80 column is also legacy!)

• This is the graphics hardware that
generates the clunky screen that you use
to configure your BIOS.

ch = char
cl = color

0
1

0 1 2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Writing characters to the screen

• This is how you would write a
character on the screen.

• The display had a permanent
memory address where anything
placed in there, would be displayed
to the screen.

trying to find which
address to write into

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

col 0col 0 col 1col 1 col 2col 2

row 0
(base 16) B8000 B8001 B8002 B8003 B8004 B8005

row 0
(base 10) 753664 753665 753664 +

1*2
753664 +

2*2

...both character
and colors are 8

bits... since we can
address each 8 bit
memory address

(row 0, col 1) : 75366410 + 210 * (8010 * 010 + 110) = 75366410 + 210 = B800216

(row 0, col 2) : 75366410 + 210 * (8010 * 010 + 210) = 75366410 + 410 = B800416

(row 1, col 0) : 75366410 + 210 * (8010 * 110 + 010) = 75366410 + 16010 = B80A016

(row 1, col 1) : 75366410 + 210 * (8010 * 110 + 110) = 75366410 + 16210 = B80A116

ch = char
cl = color

0
1

0 1 2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arrays

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Arrays

• Arrays are blocks of consecutive types.

• An array variable is similar to a pointer of that type that has been
initialized to the address of the first entry of the block.

• That is, pointers are similar to uninitialized array variables.

‣This code declares a pointer and an
array of length 10.
‣The array declaration causes the
compiler to reserve a block of 10
consecutive 16-bit cells.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Moving through the array index

• Adding 1 to p is equivalent to adding 1 to the array index.

• Assuming a short is 16 bits, the compiler knows p points to a
16-bit memory elements, so when altering the address which p
points to, the compiler adjusts based on the type.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another array example

• This example declares a pointer to a short type
and an array of 5 longs.

• The pointer is loaded with the address of the base
of the array.

• The compiler knows that p is supposed to point to types of 16-bit shorts,
and it will do so.

• The code simply initializes the address to which p points. After that, there
is nothing to prevent the code from adding any number to the address and
dereferencing the result.

• It is very easy to overwrite memory locations by accident (or on purpose
– consts may not be so constant after all).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another array example

• It is very easy to overwrite memory locations by accident (or on
purpose – consts may not be so constant after all).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Cycling through arrays using pointers

Code that cycles through the contents of an array using pointers.

#include <iostream>
using namespace std;

int main ()
{
 int array[10]={0,11,22,33,44,55,66,77,88,99};
 int *p = &array[0];

 for (int i=0 ; i<10 ; i++)
 {
 cout<<p<<"\t";
 cout<<*p<<endl;
 //incrementing the pointer address
 *(p++);
 }
}

Note: this is C++ code, and it will not
work on the Arduino (especially the

cout, namespace and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Array summary

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of arrays in Arduino

•This code creates two arrays:
an array of integers for pins
connected to switches and an
array of pins connected to
LEDs.

•The state of the switches and
LEDs are stored in arrays.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why do we care about pointers?

• Passing information in and out of function calls.

• Dynamic memory allocation.

• Especially in embedded devices, we can use pointers to access
memory-mapped registers in order to manage various
peripheral devices.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Passing by reference

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Swap function

•This code does not swap the a and b values.

•Once we enter the function, the function input
values are copied onto the stack!

•The program counter is copied into the stack
(stack pointer (SP)).

•There are three local variables, temp, x (holds a
copy of a) and y (holds a copy of b).

How the values in the
local memory change

after each instruction of
the function is executed.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Passing by reference

• This code does what we intended because the addresses of a
and b are passed into the function.

• The function accesses their values by indirect reference via the
pointers x and y.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Passing by reference

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another reason to use pointers

• We can use pointers for passing large pieces of memory into a
function.

• For example, suppose we wanted to pass a structure (we will
talk about this soon) of 10,000 longs into a function.

• If you tried passing by value, the stack would need to hold all
80,000 bytes.

• However, if we used a pointer to the base of the structure, the
stack only needs to hold the 4-byte base address.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Dynamic memory allocation

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Dangers of dynamic memory
allocation: memory leaks

•You can dynamically allocate memory at run-time and have the
base be referred via a pointer.

•The compiler doesn’t reserve the consecutive bytes of
memory as for an array declaration. Instead, the CPU is
directed to find a block of consecutive bytes in memory that
are not being used and return the base address.

•WARNING: it is easy to lose memory if a function allocates
memory but never frees it. This is a memory leak, and,
eventually, repeated calls to the function will consume all of the
available memory, causing the program to crash.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Dangers of dynamic memory
allocation: debugging problems

•WARNING: run-time allocation is not a great idea for
embedded programs.

•Memory leaks in PC applications are difficult enough to track
down using all of the powerful debugging tools available on a
host system.

•Many embedded system tools are extremely limited, and so
debugging an embedded memory issue tends to be
exceptionally difficult.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of dynamic memory
allocation

• The C operator macro sizeof() returns the number of bytes
used by the given argument.

• The function malloc() returns the base to a block of requested
bytes. In this code, the processor must locate 10 consecutive
unused short cells and return the base address.

• If they cannot be found, the special “invalid address” NULL is
returned.

The free
function
returns
memory

back to the
system.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Alternative way to dynamically
allocate memory

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

I can use the allocated memory as an
array

#include <iostream>
using namespace std;

#define NUMBER_SHORTS_TO_ALLOCATE 20

int main ()
{

 short *p;
 p = (short *) calloc (NUMBER_SHORTS_TO_ALLOCATE,sizeof(short));

 if (p==NULL){ cout<<"could not allocate"<<endl; }

 cout<<p[10]<<endl;
 p[10]=12;
 cout<<p[10]<<endl;

 free(p);
}

Note: this is C++ code, and it will not
work on the Arduino (especially the

cout, namespace and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Adjusting the size of the allocated
memory

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Multi-dimensional arrays

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Multi-dimensional arrays

•Note that the const qualifier is not required for the array
definition.

•However, many times large arrays are used for various lookup
tables and so are meant to be fixed conceptually.

•Remember the first entry in every dimension is 0.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Multi-dimensional array memory
organization

•How does the compiler organizes
individual elements in a multi-
dimensional array?

•Note that the rightmost array index
varies fastest as elements are
accessed in storage order.

•Index MAX_DIM2 will vary most
frequently.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Generic pointers

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Generic (void) pointers

•Sometimes we want a pointer which is not
locked to a specific type. It can potentially
point to anything.

•void *name; //declare a generic
pointer called name

‣ name can point to anything in the
computer.

‣ name cannot be dereferenced with *

‣ Must instead assign value of void
pointer to a pointer of the type you
want.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Null pointer

•If a pointer has the value NULL, it points to nothing. NULL is a
predefined constant.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function pointers

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a function pointer?

•While a function is not a variable, it is a label and still has an
address.

•As a result, it is possible to define function pointers, which can
be assigned and treated as any other pointer variable.

•For example, they can be passed into other functions, in
particular, callbacks into Real-Time Operating Systems
(RTOSes) or hooks in an Interrupt Service Routine (ISR)
vector table.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why do we need a function pointer?

• A function pointer is a variable that stores the address of a
function that can later be called through that function pointer.

• Why do we need this?

• Sometimes we want the same function have different
behaviors at different times.

• Sometimes we just want to have a queue filled with
function pointers, so as we transverse the queue, we merely
execute the a function without doing any extra operations.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function Pointer Syntax

void (*foo)(int);

• In this example, foo is a pointer to a function taking one
argument, an integer, and that returns void.

• It's as if you're declaring a function called "*foo", which takes an
int and returns void.

• If *foo is a function, then foo must be a pointer to a function.
(Similarly, a declaration like int *x can be read as *x is an int, so
x must be a pointer to an int.)

• The declaration for a function pointer is similar to the
declaration of a function but with (*func_name) where you'd
normally just put func_name.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Initializing function pointers

#include <iostream>
using namespace std;

void my_int_func(int x)
{ cout<<x<<endl; }

int main()
{
 void (*foo)(int);
 //the ampersand(&) is optional
 foo = &my_int_func;

 return 0;
}

• To initialize a function
pointer, you must give it the
address of a function in your
program.

• The syntax is like any other
variable.

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Using a function pointer

#include <iostream>
using namespace std;

void my_int_func(int x)
{ cout<<x<<endl; }

int main()
{
 void (*foo)(int);
 foo = &my_int_func;

 // calling my_int_func
 //(note that you do not need
 //to write (*foo)(2)
 foo(2);

 //but you can... if you want
 (*foo)(2);

 return 0;
}

• To call the function pointed
to by a function pointer, you
treat the function pointer as
though it were the name of
the function you wish to call.

• The act of calling it performs
the dereference; there's no
need to do it yourself.

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include <iostream>
using namespace std;

// The four arithmetic operations
float Plus (float a, float b) { return a+b; }
float Minus (float a, float b) { return a-b; }
float Multiply(float a, float b) { return a*b; }
float Divide (float a, float b) { return a/b; }

// Solution with a switch-statement
// <opCode> specifies which operation to execute
void Switch(float a, float b, char opCode)
{
 float result;

 // execute operation
 switch(opCode)
 {
 case '+' : result = Plus (a, b); break;
 case '-' : result = Minus (a, b); break;
 case '*' : result = Multiply (a, b); break;
 case '/' : result = Divide (a, b); break;
 }

 // display result
 cout << "Switch: 2+5=" << result << endl;
}

int main()
{
 Switch(2, 5, '+');
}

• The main function performs
the arithmetic operation
through an intermediate
function (switch).

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include <iostream>
using namespace std;

// The four arithmetic operations
float Plus (float a, float b) { return a+b; }
float Minus (float a, float b) { return a-b; }
float Multiply(float a, float b) { return a*b; }
float Divide (float a, float b) { return a/b; }

// Solution with a function pointer
// <pt2Func> is a function pointer and points to
// a function which takes two floats and returns a
// float. The function pointer "specifies" which
// operation shall be executed.

void Switch_With_Function_Pointer(float a, float b,
float (*pt2Func)(float, float))
{
// call using function pointer
 float result = pt2Func(a, b);

 cout <<"Switch replaced by func. ptr.: 2-5=";
 // display result
 cout << result << endl;
}

int main()
{
 Switch_With_Function_Pointer(2, 5, &Minus);
}

• Solution with a function
pointer

• The function pointer
"specifies" which operation
shall be executed

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Summary of function pointers

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to use arrays of function
pointers ?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• These are two silly
functions that take 3
arguments, print something
on the screen and returns a
float... which is also the first
argument

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• Here I am creating an
array of 10 positions, that
will store a pointers to a
function that can take a
(float, char, char) as
arguments.

• Initially the function
pointers are all set to
NULL.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• Here I am adding the
addresses of each function
to a particular element of
the funcArr array

• Make sure you don’t call
the elements that are not
assigned!

• For example, element #4
and element #5 are still
NULL... which point to
nothing.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• I am calling the function
that is on the position #1 of
the array, with the (12,’a’,’b’)
as the arguments.

• This is the short form
notation

• Of course, the DoMore
function will return
something, but we are not
storing it anywhere.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• This is the “correct”, albeit
confusing, form of calling
the function pointer.

• The return_val will keep
the return value of the
function.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• This just displays the
return value of the function.

• Warning: If you call a
position that hasn’t a valid
function pointer (e.g.
position #5 in the funcArr
for example) you will get a
segmentation fault!

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

void DoIt ()
{ Serial.println("... inside DoIt()");
}

void DoMore ()
{ Serial.println("... inside DoMore()");
}

void setup()
{
 Serial.begin(9600);

 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char
 void (*funcArr[10])(void) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1]();
 funcArr[2]();
}

void loop ()
{
}

•Arduino friendly version of
the code with two
functions that take and
return no arguments

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

int DoIt (float number, char char1, char char2)
{ Serial.println("... inside DoIt()"); return(number);
}

int DoMore (float number, char char1, char char2)
{ Serial.println("... inside DoMore()"); return(number);
}

void setup()
{
 Serial.begin(9600);

 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char
 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');
 funcArr[2](15, 'a', 'b');
}

void loop ()
{
}

•Arduino friendly version of
the code with two
functions that take three
arguments and return an
integer

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointer arithmetic

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointer arithmetic

•A powerful feature of pointers is
the ability to compute with them
like integers. However only some
operations are allowed with
pointers.

Allowed Not Allowed

• Add a scalar to a pointer
• Subtract pointers

• Add two pointers
• Multiply or Divide Pointers
• Multiply by a scalar
• Divide by a scalar

