Pointers and Arrays

Reference: Russell Chapter 2

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Why do we need to learn this (again)?

* Pointers and Arrays are a bit tricky and we need to understand
them if we want to implement queues and more advanced
structures.

* Some of the RTOS code we will be using uses these structures
quite often.

* Since we are dealing with embedded systems with limited
resources, its always a good idea to learn how to carefully
dynamically allocate memory for uses.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

What is a pointer?

A pointer is a variable that contains an address, usually of
another variable, but it can be anything in the addressable space.

Memory, in general, is just a block of addressable bits that may be

manipulated in various-sized groups, but the bits are all physically
the same.

Then, a pointer is a group of cells (usually 2 or 4 8-bit cells) that
holds an address.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Pointer example

Let r be a pointer that points to L, g be a pointer that points to
S, and p be a pointer that points to C.

Let S be a 16-bit short, L be a 32-bit long,and € be an 8-bit
char. In this example, pointers are 32-bit variables meaning the
processor has 32-bit addressable space.

r--

An example of a schematic view of memory. The
smallest division represents one 8-bit memory location.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Unary operators: & and *

r_-

* The amount of space reserved for any pointer is the same, no
matter to what type the pointer is pointing.

* The way to make the pointer point to some variable is via the
operator &, which gives the address of the label on its right- 4

hand-side. -

* To access the contents of a variable using a pointer is via the
operator *, which is called the dereferencing operator.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Example

* p is the address of variable C
* g is the address of variable S
* r is the address of variable L

-
|

&r is the address of the pointer r
&q is the address of the pointer g

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Another example

/ * p contains the address of variable c.
* p must then be a pointer.

e Variable ¢ will now have the value 0.

* | go to the address of the pointer p and
setitto |0.

e Variable ¢ will now have the value of |0.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

How to declare pointers!?

* To declare a pointer, just add the * symbol to the left of the
variable name.

* char *p;

* short *q;

* long *r;

* Don’t forget that the space allocated to hold p, q and r is all the
same (usually 32-bits on modern microprocessors), but what
they point to is different.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Pointer precedence

* The operators *, &, ++ and -- all have the same level of operator
precedence (which is very high).

* When the compiler parses a line of source code, it resolves
operators with the same precedence from right-to-left.

* Thus, the statement *p++; will have a very different result
compared to (*p)++;

e *p++ => increments the address stored in p first, then reads the
contents of the address which p++ is pointing to.

* (*p)++ => reads the dereferenced address first and increment
the resulting value without changing the address stored in p.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Precedence examples

address of variable ¢ is 100

contents of address|01 is 0

o

Assume that; Before After
Instruction &c=100 101 ' &c=100 101 »

= *p + 1; 5 0 | 100 6 0 | 100
*xp += 1l - 100 100

Xne THRp; 100 100
¢ Chal" P, (*p)++; 100 100
*DH+; 100 101

e char c = 5; ¢

OPZ&C;

» Remember *p will print out the contents of the variable that p
IS pointing to.
p *p += | is the same as *p = *p +1|

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Memory map example

\\ variable declarations
int j=3;

int *pa;

int a;

* Consider the following code: int b = Ox2F;

\\ executable code
pa = &j;
a = *pa;
*pa = D;

Name | Addr
e Assume compiler assigns memory up 3000
from 0x3000.Also assume that an integer
is 32 bits (4 bytes).We can chow each
byte of memory as it would be assigned
by the compiler.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Memory map example

\\ variable declarations

int j=3;
int *pa;
int a;

int b = 0x2F;

\\ executable code

pa = &j;
a = *pa;
*pa = Db;

* 32 bits = 32, = 20,6 = 0x0020

&

Name

Addr

j

3000

pa

3001

3002

3003

Executable code

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

* Ox2F = 0000 0000 0010 I'I'11,=002F

_ Assuming a 32 bit address space

Name

Addr

j

3000

pa

3001

3002

3003

WESTERN NEW ENGLAND

UNIVERSITY

Pointers in Arduino

void setup () {} * This compiles just fine (after all

void loop () its pure ANSI-C

{

int myInt; . .

float myFloat; * However nothing will show up

int* 1ntPtr = &myInt;

floatr floatPtr - smyFloat: in the serial monitor, since the
microprocessor does not know

int szint sizeof (myInt); . .

int szflt sizeof (myFloat) ; What to dO Wlth Pl"lntf.

printf ("intPtr $d\n", (int)intPtr);

printf ("intPtr+1 sd\n", (int)intPtr+1);

printf ("fltPtr $d\n", (int)floatPtr);

printf ("fltPtr++ $d\n", (int)floatPtr++);

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Pointers

in Arduino

vold setup ()
void loop ()
{

char myChar;
float myFloat;
int myInt,myInt2;

{ Serial.begin (9600

char* charPtr &myChar;
float* floatPtr &myFloat;
int* 1ntPtr &myInt;

int* intPtr?2 &myInt2;

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

print ("address of myChar
println(int (charPtr));
print ("address of myFloat
println (int (floatPtr));
print ("address of myInt
println(int (intPtr));
print ("address of myInt?2
println(int (1ntPtr2));

while (1);

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

)}

e OO0 /dev/cu.usbmodemfal3l

(Send)

address of myChar = 2285
address of myFloat = 2299
address of myInt = 2286
address of myIntZ = 2288

ATmega328P is an

8bit processor 0

v

W Autoscroll :No line ending T] ':9600 baud T]F

= ")i e S§lightly more interesting example of

vy . pointers in Arduino.

* Integers and floats require |6 bits,
Chars require 8 bits. That is why myChar
and mylnt are separated by 8 bits (or |
byte), while mylnt2 and myFloat are
separated by |6 bits (or 2 bytes).

WESTERN NEW ENGLAND
UNIVERSITY

").
4

— 11) .
’

Historical example: IBM-PC 80

poooooo00000O00D_00 FUPﬂ 000 0o_o0o00000G_000000 "ﬂ[] IHJU OUUUHUL UGUEU,D"JGGUUBUUU&

IG5 61 T 89 N1 0511212513514 15 iGli 920 A'i’l‘\:24 26 27 28 29 30 31 32 34 |=‘ii.y1i141414)4 44 45 46 47 48 43 50 51 525354 85 5 58 59 60 61 62 63 64 65 66 67 68 69 7C 71 72 13 74 79 76 77 78 79 8C

Illll‘?'&‘l“llll‘lll 11111111 ll IS] HIH‘IIHIHH Illl"l TR R] i) o

RN R IR e))RR)) e) I RIS)RR 1) SISEIE) D IRISIR) . [(IR)RR R IR ()R] e Rl e)RR S|

BRI 3 R R0 Ry e R RIRa R 3 L 30 303R 3 d L 3 1 8R3 3 T3 3R3E3Ra L FaR 3R aR3R3Ng | | 33 RaRIR3Rd 3 35 [RIRGIdEdRIRg SRORdRIf| HRGRIE BIRIE3 NN

i d444484444444448848484 4444440444844 44448448444_ 444444440444 444444444444 44484 44444444
 -of
“mmm""“_ FIERGEGES f SRORGRSE5E8 Eanileb hEGERRoRGIL || SRORGRnESTEEG L [RhiL | L6 R0 nRORAREIL I B nRGRnR RACRARGRG] 1 F5R0RTH [RORGTORTRaRo I 0k SRG1555E3 OR0E

E66666666666666666_66G66G6666_6666666_666_666656666666_6_

,,,,,,,,H” DL T T D T e T T e R TR R T R e T T T B 7
Ml el el el el e a]
";',',','.'.'.'.'.'.'.'\' 99880660888 38880888088808886 ;8888880806688 _28068808880888_880888868888_8802888_86_5888888°8

99999939999“5 9‘19909“9999)RRy HBQ“SQQJJJ ﬂgnggﬁ“gggggggJ \Jﬂ"39J99399993399339
916 11 12 13 14 15 16 17 18 1820 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 33 40 41 42 43 44 45 4G 47 48 43 50 51 52 53 54 55 56 57 56 59 60 &1 62 63 64 65 66 67 65 69 20 71 12 13 73 15 5 17 18 19 80
5’08’?."-‘;

* This computer had a 80 col x 40 row
display buffer (80 column is also legacy!)

* This is the graphics hardware that
, generates the clunky screen that you use
| . - to configure your BIOS.

hat

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Writing characters to the screen

* This is how you would write a
character on the screen.

* The display had a permanent
memory address where anything
placed in there, would be displayed
to the screen.

| RRRRRRRE
= #define DISP_BUFFER 0xB8000
1 RRRRRRANN \ int rov.:r, col;
@E‘I'l'lllllllllilll‘ﬂ;\\ \:& char dlfp_char;

char *p;

// Let’s display "A" in row 4, col 20
disp_char = ’A’;

row = 4; // for example ..

col = 20; /7" "

trying to find which _
. . —3 p = (char *) (DISP_BUFFER + 2 *(80*row + col))
address to write into *p = disp_char;

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

#define DISP_BUFFER 0xB8000
int row, col;
char disp_char;

char *p; and colors are 8

// Let’s display "A" in row 4, col 20
disp_char = ’A’;

- s bits... since we can
row = 4; or example ... cee
L= har address each 8 bit

p = (char *) (DISP_BUFFER + 2 *(80*row + col)) |

oo = diun. char; lor memory address

row 0

(base 16) B8000 B8OOI B8002 B8004

row 0 753664 + 753664 +
base 10) | 753664 | 753665 o e

(row 0, col |) :7536640 + 210 * (8010 * 010 + l10) = 7536640 + 210 = B8002/¢
(row 0, col 2) : 7536640 + 210 * (8010 * 010 + 210) = 7536640 + 410 = B8004¢
(row |, col 0) : 7536640 + 210 * (8010 * I 10 + 010) = 7536640 + 160/0 = B8OAO s

(row |, col |):753664i0+ 210 * (8010 * l10+ l10) = 7536640 + 1620 = B8OAI ¢

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Arrays

* Arrays are blocks of consecutive types.

* An array variable is similar to a pointer of that type that has been
initialized to the address of the first entry of the block.

* That is, pointers are similar to uninitialized array variables.

e R » This code declares a pointer and an
array of length |0.

» The array declaration causes the

/* The following ezpressions are true. compiler to reserve a block of 10

*(p) == al[2]; . .
*(p+1) == al[3]; consecutive | 6-bit cells.

&(al2]);

J
J

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Moving through the array index

short =p;
short a[10];

p = &(al2]);

/* The following ezpressions are true. */
=(p) == al2];
*(p+1) == al[3];

® Adding | to p is equivalent to adding | to the array index.

® Assuming a short is |6 bits, the compiler knows p points to a
| 6-bit memory elements, so when altering the address which p
points to, the compiler adjusts based on the type.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Another array example

* This example declares a pointer to a short type ;. .

and an array of 5 longs. long a[5];
char c;

* The pointer is loaded with the address of the base B (aRORE] %) (ECAILON)):
of the array.

* The compiler knows that p is supposed to point to types of |16-bit shorts,
and it will do so.

* The code simply initializes the address to which p points. After that, there
is nothing to prevent the code from adding any number to the address and
dereferencing the result.

* It is very easy to overwrite memory locations by accident (or on purpose

— consts may not be so constant after all).

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Another array example

* |t is very easy to overwrite memory locations by accident (or on
purpose — consts may not be so constant after all).

short =*p;
long a[5];
char c;

p = (short =*) (&(al[0]));

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Cycling through arrays using pointers

| Note: this is C++ code, and it will not
#include <iostream> . .
using namespace std; work on the Arduino (especially the
cout, namespace and iostream library)

int main ()

{

int array([10]={0,11,22,33,44,55,66,77,88,99};
int *p = &array[0];

for (int 1=0 ; 1<10 ; 1++)
{
cout<<p<<"\t";
cout<<*p<<endl;
//incrementing the pointer address
*(pt++);

Code that cycles through the contents of an array using pointers.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Array summary

int a[10], *p;

p = &a[0];

a[3] *(p+3)
are exactly the same.

for (i=0;i<3;i++) qli] = 0; are exactly the same.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

of arrays in Arduino

int inputPins[] = {2,3,4,5}; // create an array of pins for switch inputs

int ledPins[] = {10,11,12,13}; // create array of output pins for LEDs

void setup()

for(int index = 0; index < 4; index++)

{
pinMode(ledPins[index], OUTPUT); // declare LED as output
pinMode(inputPins[index], INPUT); // declare pushbutton as input
digitalWrite(inputPins[index],HIGH); // enable pull-up resistors
//(see Recipe 5.2)
}

. }
® This code creates two arrays: =

an array of integers for pins fo(int. indx - 0 nden < 5 index)

int val = digitalRead(inputPins[i]); // read input value

COnI’IECted tO SWltCheS and an i’f (val == LOW) // check if the switch is pressed

1

array Of P|ns Connected to } digitalWrite(ledPins[index], HIGH); // turn LED on if switch is pressed

LEDs. -

" digitalWrite(ledPins[i], LOW); // turn LED off
}

® The state of the switches and ,’
LEDs are stored in arrays.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Why do we care about pointers?

® Passing information in and out of function calls.

® Dynamic memory allocation.

® Especially in embedded devices, we can use pointers to access
memory-mapped registers in order to manage various
peripheral devices.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Passing by reference

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Swap function

® This code does not swap the a and b values. S

short a = 10;
short b = 13;

® Once we enter the function, the function input
values are copied onto the stack!

swap (a,b);

/* a == 2, b == ? #/
}

® The program counter is copied into the stack e e
(stack pointer (SP)). {

short temp;

temp = Xx;

® There are three local variables, temp, x (holds a vi
copy of @) and y (holds a copy of b) o

How the values in the \/@\j/ alin

local memory change T I | j/\l 1., I

after each instruction of S TR TRET

. .) 10
the function is executed. 13

10

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Passing by reference

void main (void)

{
short a 10;
short b 13;

/* Now we pass the address of the variables we want to change. */
swap (&a,&b);

/¥ a == 2, b == 2 %/

}

void swap (short #*x, short =*y)
{

short temp;
temp = *x;
*X :y;

*y = temp;
}

® This code does what we intended because the addresses of a
and b are passed into the function.

® The function accesses their values by indirect reference via the
pointers x and .

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Passing by reference

void main (void)
{
short a 10;
short b 13;

/* Now we pass the address of the variables we want to change. */
swap (&a,b);

}

void swap (short =*x, short =*y)
{

short temp;

temp = *x;
*Xx = *y;
*y temp;

I ‘ I

return address

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Another reason to use pointers

® VWe can use pointers for passing large pieces of memory into a
function.

® For example, suppose we wanted to pass a structure (we will
talk about this soon) of 10,000 longs into a function.

® |f you tried passing by value, the stack would need to hold all
80,000 bytes.

® However, if we used a pointer to the base of the structure, the
stack only needs to hold the 4-byte base address.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Dynamic memory allocation

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Dangers of dynamic memory
allocation: memory leaks

® You can dynamically allocate memory at run-time and have the
base be referred via a pointer.

® The compiler doesn’t reserve the consecutive bytes of
memory as for an array declaration. Instead, the CPU is
directed to find a block of consecutive bytes in memory that
are not being used and return the base address.

® VWWARNING: it is easy to lose memory if a function allocates
memory but never frees it. This is a memory leak, and,
eventually, repeated calls to the function will consume all of the
available memory, causing the program to crash.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Dangers of dynamic memory
allocation: debugging problems

® WARNING: run-time allocation is not a great idea for
embedded programs.

® Memory leaks in PC applications are difficult enough to track
down using all of the powerful debugging tools available on a
host system.

® Many embedded system tools are extremely limited, and so
debugging an embedded memory issue tends to be
exceptionally difficult.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Example of dynamic memory
allocation

#define NUMBER_OF_SHORTS_TO_ALLOCATE 10

The free

function
p = (short *) malloc (sizeof (short) * NUMBER_OF_SHORTS_TO_ALLOCATE);

returns if (p == NULL)
{

memory /* error -- need to tell the user and stop ezecution */

}
back to the

short =p;

/* skipping code */
S)’Stem. \ free (p);

® The C operator macro sizeof() returns the number of bytes
used by the given argument.

® The function malloc() returns the base to a block of requested
bytes. In this code, the processor must locate |0 consecutive
unused short cells and return the base address.

® |f they cannot be found, the special “invalid address” NULL is

returned.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Alternative way to dynamically
allocate memory

#define NUMBER_OF_SHORTS_TO_ALLOCATE 10

short =*p;

p = (short #*) calloc (NUMBER_OF_SHORTS_TO_ALLOCATE, sizeof (short));
it (p == NULL)
{

/* error -- need to tell the user and stop ezecutition */

}
/* skipping code */

free (p);

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

| can use the allocated memory as an
array

Note: this is C++ code, and it will not
work on the Arduino (especially the
cout, namespace and iostream library)

#include <iostream>
using namespace std;

#define NUMBER SHORTS TO ALLOCATE 20

int main ()

{

short *p;
p = (short *) calloc (NUMBER SHORTS TO ALLOCATE, sizeof (short));

1f (p==NULL) { cout<<"could not allocate"<<endl; }
cout<<p[1l0]<<endl;
pll0]=12;

cout<<p[1l0]<<endl;

free(p);

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Adjusting the size of the allocated
memory

#define NUMBER_OF_SHORTS_TO_ALLOCATE 10
#define NUMBER_OF_SHORTS_TO_REALLOCATE 12

short =*p;

p = (short *) calloc (NUMBER_OF_SHORTS_TO_ALLOCATE, sizeof (short));
if (p == NULL)
L

/* error -- need to tell the user and stop ezecution */

}
/* skipping code */

p = (short *) realloc (p, sizeof (short) =
NUMBER_OF_SHORTS_TO_REALLOCATE) ;

it (p == NULL)

{

/* error -- need to tell the user and stop ezecution */

}

free (p);

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Multi-dimensional arrays

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Multi-dimensional arrays

® Note that the const qualifier is not required for the array
definition.

® However, many times large arrays are used for various lookup
tables and so are meant to be fixed conceptually.

® Remember the first entry in every dimension is 0.

#define MAX_ROWS 2
#define MAX_COLS 5

const short m_table [MAX_ROWS] [MAX_COLS] =
{
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10}
I

/* Then the following are true. */
m_table [0] [1] == 2;
m_table[1] [4] == 10;

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Multi-dimensional array memory
organization

® How does the compiler organizes #detine uax_ommo 3
#define MAX_DIM1 2

individual elements in a multi- #define MAX_DIM2 5

dimensional ar'r'a)l? const short m_table [MAX_DIMO] [MAX_DIM1][MAX_DIM2] =
{
{

® Note that the rightmost array index P o
varies fastest as elements are

. {11, 14,
accessed in storage order. o 5N

® Index MAX DIM2 will vary most (21,

{26.
frequently. o
[ﬁmeel /* Then the following are true. */
m_table [0] [1] [2] == 8;
m_table [2] [1] [3] == 29;

3 ‘4 5 ‘6 7 ‘8 11 ’m

| [o][x][0] | o]

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Generic pointers

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Generic (void) pointers

® Sometimes we want a pointer which is not

locked to a specific type. It can potentially
point to anything.

® void *name; //declare a generic
polnter called name

) hame can point to anything in the
computer.

) name cannot be dereferenced with *

p Must instead assign value of void
pointer to a pointer of the type you
want.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

void* myGenericPtr;

int t, *ip, myvalue = 3;
myGenericPtr = &myvalue; // OK
t = *myGenericPtr; // NO!!

/ /%% 3k s ok sk ok sk ok sk ok ok ok ok K

ip = nyGenericPtr;
t = *ip; // OK!!

WESTERN NEW ENGLAND
UNIVERSITY

Null pointer

e |f a pointer has the value NULL, it points to nothing. NULL is a
predefined constant.

int i,*ip = NULL;
[...]

if(ip == NULL) |
// I haven’t defined ip yet
}

else { // OK, now I can use it!
i = *ip;}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Function pointers

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

What is a function pointer?

® While a function is not a variable, it is a label and still has an
address.

® As a result, it is possible to define function pointers, which can
be assigned and treated as any other pointer variable.

® For example, they can be passed into other functions, in
particular, callbacks into Real-Time Operating Systems
(RTOSes) or hooks in an Interrupt Service Routine (ISR)
vector table.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Why do we need a function pointer?

® A function pointer is a variable that stores the address of a
function that can later be called through that function pointer.

® Why do we need this!?

® Sometimes we want the same function have different
behaviors at different times.

® Sometimes we just want to have a queue filled with
function pointers, so as we transverse the queue, we merely
execute the a function without doing any extra operations.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Function Pointer Syntax

void (*foo) (int); |

® |n this example, foo is a pointer to a function taking one
argument, an integer, and that returns void.

® |t's as if you're declaring a function called "*fo0", which takes an
int and returns void.

o |f *foo is a function, then fOoO must be a pointer to a function.
(Similarly, a declaration like int *X can be read as *X is an int, so
X must be a pointer to an int.)

® The declaration for a function pointer is similar to the
declaration of a function but with (*func_name) where you'd
normally just put func_name.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Initializing function pointers

- ® To initialize a function
#include <iostream> . pointer, you must give it the

using namespace std; :) .
. address of a function in your

void my int func(int x) program
{ cout<<x<<endl; '} g .

et ~ *The syntax is like any other
void (*foo) (int); - variable.
//the ampersand (&) 1is optional 5
foo = &my int func;

Note: this is C++ code, and it
will not work on the Arduino
(especially the cout, namespace
and iostream library)

return 0;

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Using a function pointer

#include <iostream>
using namespace std;

void my int func(int x)
{ cout<<x<<endl; }

int main ()

{
void (*foo) (int);
foo = &my int func;

// calling my int func

// (note that you do not need
//to write (*foo) (2)

foo(2);

//but you can... 1f you want
(*foo) (2)7

return 0O;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

* To call the function pointed

 to by a function pointer, you
~ treat the function pointer as
~ though it were the name of

~ the function you wish to call.

* The act of calling it performs

the dereference; there's no

need to do it yourself.

Note: this is C++ code, and it
will not work on the Arduino
(especially the cout, namespace
and iostream library)

WESTERN NEW ENGLAND

i#include <iostream>
iusing namespace std;

E// The four arithmetic operations
ifloat Plus (float a, float b)
;float Minus (float a, float Db)
ifloat Multiply(float a, float b)
ifloat Divide (float a, float b)

{

{ return a-b;

{ return a*b;

{ return a/b;
E// Solution with a switch-statement

i// <opCode> specifies which operation to execute
gvoid Switch (float a, float b, char opCode)

H
: float result;

// execute operation

switch (opCode)

{

Plus (a,
Minus (a,
Multiply (a,
Divide (a,

case : result
case : result
case : result
case : result

}

// display result
cout << "Switch: 2+45=" << result << endl;

Eint main ()
|
: Switch (2, 5,

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Note: this is C++ code, and it
will not work on the Arduino
(especially the cout, namespace
and iostream library)

* The main function performs
the arithmetic operation
through an intermediate
function (switch).

WESTERN NEW ENGLAND

i#include <iostream>
iusing namespace std;

E// The four arithmetic operations
ifloat Plus (float float Db)
ifloat Minus float float b
return a*b;

{
{ return a-b;
{
{ return a/b;

()
ifloat Multiply(float float Db)
ifloat Divide ()

float float Db

E// Solution with a function pointer

i// <pt2Func> is a function pointer and points to
i// a function which takes two floats and returns
i// float. The function pointer "specifies" which
i// operation shall be executed.

Evoid Switch With Function Pointer (float a, float
ifloat (*pt2Func) (float, float))

H{

i// call using function pointer

: float result = pt2Func(a, b);

cout <<"Switch replaced by func. ptr.: 2-5=";
// display result
cout << result << endl;

Eint main ()
|

Switch With Function Pointer (2, 5, &Minus);

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Note: this is C++ code, and it
will not work on the Arduino
(especially the cout, namespace
and iostream library)

e Solution with a function
pointer

* The function pointer
"specifies” which operation
shall be executed

WESTERN NEW ENGLAND

Summary of function pointers

return_type (* variableName) (argument_list);

int (*IntFuncPtr) ();
\\ IntFuncPtr is a pointer to a function with
\\ no arguments which returns an int

double (*doubleFuncPtr) (int argl, char arg2)
\\ doubleFuncPtr is a pointer to a function with
\\ an int and a char arg which returns a double.

Assignment to function pointers:

int (* IFP)(int x) = NULL; // empty function pointer
int realfunction(int x); // an actual function

IFP &realfunction;
IFP = realfunction; // can skip &

Dereferencing function pointers:

(*xIFP) (5) // call function realfunction with arg 5

IFP(5) // can also use function pointer just like
// original function name

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

How to use arrays of function

pointers !

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

#include<iostream>
lusing namespace std;

'
int Dolt

char char?2)
return (number) ; }

(float number, char charl,
{ cout<<"... 1inside DoIt () "<<endl;

char char?2)
return

(float number, char charl,
inside DoMore () "<<endl;

int DoMore

{ cout<<"...

AN
iint main ()

{

(number) ; }

//
//
//
//

define arrays and 1ni each element to NULL,

<funcArr> 1is an array with 10 pointers to

functions which return an

int and take a float and two char
(*funcArr[10]) (float, char, char) =

int {NULL};

// assign the function's address 'DoIt'
funcArr[0] funcArr[2] &Dolt;
funcArr[1] funcArr [3] &DoMore;

// calling a function using an index to address the
// function pointer

// short form for calling function
funcArr (1] (12, 'a', 'b');

(position #1)

(position #0)
'b');

// "correct" way of calling function
int return val=(*funcArr([0]) (12, 'a',
(*funcArr[1l]) (56, 'a', 'b');

cout<< (*funcArr[0]) (34,

Nuno Alves (nalves@wne.edu), College of Engineering

and 'DoMore' E

Y,

Note: this is C++ code, and
it will not work on the
Arduino (especially the

cout, namespace and
iostream library)

* These are two silly
functions that take 3
arguments, print something
on the screen and returns a
float... which is also the first
argument

WESTERN NEW ENGLAND
UNIVERSITY

#include<iostream>

Using namespace std | Note: this is C++ code, and
Eint DoIt (float number, char charl, char char?2) 5 It WI” not WOI"I(on the
{ cout<<"... inside Dolt()"<<endl; return (number); } Arduino (eSPeCia”)’ the

;int DoMore (float number, char charl, char char?) COUt, namespace and
{ cout<<"... inside DoMore () "<<endl; return (number); } i . .
= ' iostream library)

;int main ()
H

// define arrays and ini each element to NULL,

// <funcArr> is an array with 10 pointers to g ° Here I am Crea’tlng an
// functions which return an arra)’ Of |O POSitionS, that

// int and take a float and two char . .
will store a pointers to a
- function that can take a
// assign the function's address 'DolIt' and 'DoMore' 5

funcArr[0] = funcArr[2] = &Dolt; (ﬂoat’ Char’ Char) as
funcArr[1l] = funcArr[3] = &DoMore; argumentS.

// calling a function using an index to address the
// function pointer

// short form for calling function (position #1) ¢ Inltla”)’ the function

funcArr[1] (12, 'a', 'b'); pointers are all set to

// "correct" way of calling function (position #0) E hJLJLJ_
int return val=(*funcArr[0]) (12, 'a', 'b'); :
(*funcArr[1l]) (56, 'a', 'b');

int (*funcArr[10]) (float, char, char) = {NULL}; :]

cout<< (*funcArr[0]) (34,

 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

#include<iostream>

Eusj_ng namespace std; NOte: thiS iS C++ COde, and

Eint DoIt (float number, char charl, char char?2) 5 It WI” not WOI"I(on the
{ cout<<"... inside Dolt()"<<endl; return (number); } Arduino (eSPeCia”)’ the

;int DoMore (float number, char charl, char char?) COUt, namespace and
{ cout<<"... inside DoMore () "<<endl; return (number); } i . .
= ' iostream library)

;int main ()
H

// define arrays and ini each element to NULL,

// <funcArr> is an array with 10 pointers to g ° Here I am addlng the
// functions which return an . addresses of each function

// int and take a float and two char i
to a particular element of

int (*funcArr[10]) (float, char, char) = {NULL};
the funcArr array

// assign the function's address 'Dolt' and 'DoMore' E
funcArr[0] = funcArr[2] = &Dolt;

funcArr[1] funcArr [3] &DoMore; () Make sure you don’t Ca”
// calling a function using an index to address the the elements that are not

// function pointer 5 . .
// short form for calling function (position #1) aSSIgHEd.
funcArr (1] (12, 'a', 'b'); E

// "correct"™ way of calling function (position #0) e For examp|e element #4
int return val=(*funcArr[0]) (12, 'a', 'b'"); 5 ’ .
(*funcArr(1]) (56, 'a', 'b'); . and element #5 are still

cout<< (*funcArr[0]) (34, NULL WhICh POint to

nothing.

 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

#include<iostream>
lusing namespace std;

Eint DoIt (float number, char charl, char char?2)
i{ cout<<™... inside DoIt()"<<endl; return (number); }

Eint DoMore (float number, char charl, char char?2) :
;{ cout<<"... inside DoMore () "<<endl; return (number); }

Eint main ()

{

// define arrays and ini each element to NULL,
// <funcArr> is an array with 10 pointers to
// functions which return an

// int and take a float and two char

int (*funcArr[10]) (float, char, char) = {NULL};

// assign the function's address 'DoIt' and 'DoMore' E

funcArr[0] = funcArr[2] = &Dolt;
funcArr[1l] = funcArr[3] = &DoMore;

// calling a function using an index to address the
// function pointer
// short form for calling function (position #1)

funcArr[1l] (12, 'a', 'b');

// "correct" way of calling function (position #0)
int return val=(*funcArr[0]) (12, 'a', 'b');
(*funcArr[1l]) (56, 'a', 'b');

cout<< (*funcArr[0]) (34,

Nuno Alves (nalves@wne.edu), College of Engineering

Note: this is C++ code, and
it will not work on the
Arduino (especially the

cout, namespace and
iostream library)

* | am calling the function
that is on the position #1| of
the array, with the (12,2’,b’)
as the arguments.

* This is the short form
notation

* Of course, the DoMore
function will return
something, but we are not
storing it anywhere.

WESTERN NEW ENGLAND

#include<iostream>
lusing namespace std;

Eint DoTIt
;{ cout<<"...

Eint DoMore
;{ cout<<"...

(float number, char charl,

inside DoIt () "<<endl;

char char?2)

return (number); }
(float number, char charl,
inside DoMore () "<<endl;

char char?2)
return

Eint main ()

{

// define arrays and ini each element to NULL,
// <funcArr> is an array with 10 pointers to
// functions which return an

// int and take a float and two char

int

(*funcArr[10]) (float, char, char) = {NULL};

// assign the function's address 'DoIt'
funcArr[0] funcArr[2] &Dolt;
funcArr[1] funcArr [3] &DoMore;

// calling a function using an index to address the
// function pointer

// short form for calling function
funcArr (1] (12, 'a', 'b');

(position #1)

(number) ; }E

Note: this is C++ code, and
it will not work on the
Arduino (especially the

cout, namespace and
iostream library)

and 'DoMore' E

// "correct" way of calling function
int return val=(*funcArr([0]) (12, 'a',
(*funcArr[1l]) (56, 'a', 'b');

(position #0)
'b');

cout<< (*funcArr[0]) (34,

Nuno Alves (nalves@wne.edu), College of Engineering

e This is the “correct”, albeit
confusing, form of calling
the function pointer.

* The return_val will keep
the return value of the
function.

WESTERN NEW ENGLAND
UNIVERSITY

#include<iostream>

Using namespace std | Note: this is C++ code, and
Eint DoIt (float number, char charl, char char?2) g It WI” not WOI"I(on the
{ cout<<"... inside Dolt()"<<endl; return (number); } Arduino (eSPeCia”)’ the

;int DoMore (float number, char charl, char char?) COUt, namespace and
{ cout<<"... inside DoMore () "<<endl; return (number); } i . .
= ' iostream library)

Eint main ()
H
; // define arrays and ini each element to NULL,
// <funcArr> is an array with 10 pointers to
// functions which return an

// int and take a float and two char

* This just displays the
return value of the function.

int (*funcArr[10]) (float, char, char) = {NULL};

// assign the function's address 'DoIt' and 'DoMore' E
funcArr[0] = funcArr[2] = &Dolt;
funcArr[1l] = funcArr[3] = &DoMore;

~ * Warning:If you call a
// callirllg a fgnction using an index to address the POSitiOn that hasn’t a Valid
// function pointer :

// short form for calling function (position #1) function Pointer (eg
funcArr[1] (12, 'a', 'b'); : . . .

. position #5 in the funcArr
// "correct" way of calling function (position #0) ; .
int return val=(*funcArr[0]) (12, 'a', 'b'); for example))’OU WI” get d
(*funchArrlll) {36, fa', '0); . segmentation fault!

(:cout<<(*funcArr[O])(34, 'a', 'b')<<endl;

 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

void DoTt () ~ *Arduino friendly version of
i{ Serial.println("... inside DoIt()"); ; .

) the cF>de with two

L functions that take and

'wvoid DoMore ()

i{ Serial.println("... inside DoMore ()"); return no arguments
) g

void setup ()
1
i Serial.begin (9600) ;

// define arrays and ini each element to NULL,
// <funcArr> 1s an array with 10 pointers to
// functions which return an

// int and take a float and two char

void (*funcArr[10]) (void) = {NULL};

// assign the function's address 'DoIt' and 'DoMore' E
funcArr[0] funcArr[2] &DoIt;
funcArr[1] funcArr [3] &DoMore;

// calling a function using an index to address the
// function pointer

// short form for calling function (position #1)
funcArr[1] () ;

funcArr[2] () ;

)

Evoid loop ()

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Eint DoIt (float number, char charl, char char?)
i{ Serial.println("... inside DoIt()"); return (number) ;

)

Eint DoMore (float number, char charl, char char?2)
i{ Serial.println("...

)

Evoid setup ()
A
i Serial.begin (9600) ;

// define arrays and ini each element to NULL,
// <funcArr> 1s an array with 10 pointers to

// functions which return an

// int and take a float and two char

int (*funcArr[10]) (float, char, char) = {NULL};

// assign the function's address 'DoIt' and 'DoMore'
funcArr[0] = funcArr[2] = &Dolt;
funcArr[1l] = funcArr[3] = &DoMore;

// calling a function using an index to address the
// function pointer

// short form for calling function (position #1)
funcArr[1] (12, 'a', 'b');

funcArr[2] (15, 'a', 'b');

)

void loop ()

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

inside DoMore()"); return(number);é

*Arduino friendly version of
the code with two
functions that take three
arguments and return an
integer

WESTERN NEW ENGLAND

Pointer arithmetic

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Pointer arithmetic

Example: Find the midpoint in an array.

® A powerful feature of pointers is |
. . #define SIZE 100
the ability to compute with them int lengen, buffer([SIZE];
. . int *ptrl, *ptr2, *ptr3;
like integers. However only some
. . ptrl = buffer; // points to start of array
Oper'atlons are aIIOWEd Wlth ptr2 = ptrl + 100; // points to end of array

. length = ptr2 - ptril; // length = 100
pOInteI"S. ptr3 = ptrl + length/2 // ptr3 points to mid-point of array

Allowed Not Allowed

* Add two pointers

* Multiply or Divide Pointers
* Multiply by a scalar

* Divide by a scalar

* Add a scalar to a pointer
* Subtract pointers

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

