
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Structures, linked lists, queues and
stacks

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Structures

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a structure?

• A structure is a collection of one or more variables, possibly of
different types, grouped together under a single name for
convenient handling.

• struct is a keyword introducing the structure declaration, which
is the list in braces { }.

• TagPoint is an optional structure tag. It names this kind of
structure and may be used as shorthand for the part of the
declaration in braces. The labels x and y are called members of
the structure. They are “within the scope” of this structure.

Don’t forget the semi-colon!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Declaring a structure

•Note that a structure declaration followed by no variables
does not allocate any space; it just defines the template for
later use.

•This code presented will use and allocate the space for the
structure definition previously stated. The second variable
maxPoint will declare a variable and initialize all members.

•The . operator connects the structure variable name and the
member name. So, maxPoint.x == 320 will return TRUE.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

A more complex example of
structures

• This code works fine, but
consider all of the memory
getting copied to/from the
stack; especially in cases when
the structure has several
members.

• A more efficient alternative is
to pass the address of the
structure variables, and then
use pointers within the
function. Pointers to structures
are just like any other pointer
variables.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include <iostream>
using namespace std;

struct TagPoint { int x; int y; };

struct TagPoint bad_add (struct TagPoint p1, struct TagPoint p2)
{
 struct TagPoint temp;
 temp = p1;
 temp.x = temp.x + p2.x;
 temp.y = temp.y + p2.y;

 return(temp);
}

struct TagPoint good_add (struct TagPoint *p1, struct TagPoint *p2)
{
 struct TagPoint temp;
 temp = *p1;
 temp.x = temp.x + (*p2).x;
 temp.y = temp.y + (*p2).y;

 return(temp);
}

int main()
{
 TagPoint point1, point2, sumPoints;

 point1.x=10; point1.y=20;
 point2.x=10; point2.y=20;

 sumPoints = bad_add (point1, point2);
 cout<<sumPoints.x<<" "<<sumPoints.y<<endl;

 sumPoints = good_add (&point1, &point2);
 cout<<sumPoints.x<<" "<<sumPoints.y<<endl;
}

Note: this is C++ code, and it will not
work on the Arduino (especially the

cout, namespace and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointers to structures

Pointers to structures are so
common that a special operator
-> is used to dereference the
member of a structure via a
pointer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Initializing structures

#include <stdio.h>

struct date
{
 int month;
 int day;
 int year;
};

int main()
{
 struct date cdate;

 cdate.month=1;
 cdate.day=21;
 cdate.year=2012;

 printf("%i%i%i\n",cdate.month,cdate.day,cdate.year);

 return 0;
}

#include <stdio.h>

struct date
{
 int month;
 int day;
 int year;
} cdate;

int main()
{
 cdate.month=1;
 cdate.day=21;
 cdate.year=2012;

 return 0;
}

Besides the missing printf, these two codes are functionally identical ...

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Initializing structures with assignments

#include <stdio.h>

struct date
{
 int month;
 int day;
 int year;
} cdate={1,21,2012};

int main()
{
 printf("%i%i%i\n",cdate.month,cdate.day,cdate.year);

 return 0;
}

#include <stdio.h>

struct date
{
 int month;
 int day;
 int year;
} cdate;

int main()
{
 cdate.month=1;
 cdate.day=21;
 cdate.year=2012;

 return 0;
}

Besides the missing printf, these two codes are functionally identical ...

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Initializing multiple structures

#include <stdio.h>

struct date
{
 int month;
 int day;
 int year;
} cdate={1,21,2012}, newdate2, newdate3={1,15,1976};

int main()
{
 printf("%i%i%i\n",cdate.month,cdate.day,cdate.year);

 newdate2.month=1;
 newdate2.day=21;
 newdate2.year=2012;

 printf("%i%i%i\n",newdate3.month,newdate3.day,newdate3.year);

 return 0;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Memory allocation of structs

•x requires 8 bytes
•y only uses 5 bytes

#include <stdio.h>

struct x
{
 char c;
 long l;
};

struct y
{
 long l;
 char c;
};

int main()
{

 return 0;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Linked lists
reference: http://codingfreak.blogspot.com/2009/08/

implementation-of-singly-linked-list-in.html

http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a linked list?

•A Linked list is a chain of structs called
Nodes.

•Each node has at least two members, one of
which points to the next Node in the list
and the other holds the data.

•These are defined as Single Linked Lists
because they can only point to the next
Node in the list but not to the previous.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Basic element of a linked list

 struct Node
 {
 int Data;
 struct Node *Next;
 }*Head;

•This structure defines a Node.

•Variable Data holds the data in the Node
while pointer of type struct Node Next
holds the address to the next Node in the list.

•I create an initialed Node structure named
*Head which is a pointer of type struct
Node.

•This acts as the Head to the list.

•In the main program, we initially we set 'Head'
as NULL which means list is empty.

*Head will become a
global pointer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function that inserts data at the start
of the linked list

•Inside the function we
dynamically allocate memory

• We create 'temp' node and
save the Data part.

• If Head is NULL it means
list is empty. So we set temp
node as the Head of the list
and set the Next as NULL.

• Else we set the Next in
temp node as Head and
reassign Head with temp.

void addBeg(int num)
{
 struct Node *temp;

 temp=(struct Node *)malloc(sizeof(struct Node));
 (*temp).Data = num;

 if (Head == NULL)
 {
 //List is Empty
 Head=temp;
 (*Head).Next=NULL;
 }
 else
 {
 (*temp).Next=Head;
 Head=temp;
 }
}

 struct Node
 {
 int Data;
 struct Node *Next;
 }*Head;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function that inserts data at the start
of the linked list

•Same code as before, but in
a more readable format.

•Remember:

// Adding a Node at the Beginning of the List
void addBeg(int num)
{
 struct Node *temp;

 temp=(struct Node *)malloc(sizeof(struct Node));
 temp->Data = num;

 if (Head == NULL)
 {
 //List is Empty
 Head=temp;
 Head->Next=NULL;
 }
 else
 {
 temp->Next=Head;
 Head=temp;
 }
}

 struct Node
 {
 int Data;
 struct Node *Next;
 }*Head;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function that inserts data at the start
of the linked list

// Adding a Node at the Beginning of the List
void addBeg(int num)
{
 struct Node *temp;

 temp=(struct Node *)malloc(sizeof(struct Node));
 temp->Data = num;

 if (Head == NULL)
 {
 //List is Empty
 Head=temp;
 Head->Next=NULL;
 }
 else
 {
 temp->Next=Head;
 Head=temp;
 }
}

 struct Node
 {
 int Data;
 struct Node *Next;
 }*Head;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Dynamic memory allocation

•If you want to dynamically allocate memory outside Arduino
(for example in gcc or Microsoft visual studio you need the
following two libraries:

‣#include <stdio.h>

‣#include <stdlib.h>

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Display the entire linked list contents

void display()
{
 struct Node *cur_ptr;

 cur_ptr=Head;

 if(cur_ptr==NULL)
 {
 printf("\nList is Empty");
 }
 else
 {
 printf("\nElements in the List: ");
 //traverse the entire linked list
 while(cur_ptr!=NULL)
 {
 printf(" -> %d ",cur_ptr->Data);
 cur_ptr=cur_ptr->Next;
 }
 printf("\n");
 }
}

• Create a new pointer to the
Node structure, and define its
starting point to be the Head
of the structure.

• If the Head pointer is NULL,
then the list is empty

• Otherwise, keep cycling every
single node.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Putting these two functions together
(add elements and display them)

void display()
{
 struct Node *cur_ptr;
 cur_ptr=Head;

 if(cur_ptr==NULL)
 {
 printf("\nList is Empty");
 }
 else
 {
 printf("\nElements in the List: ");
 //traverse the entire linked list
 while(cur_ptr!=NULL)
 {
 printf(" -> %d ",cur_ptr->Data);
 cur_ptr=cur_ptr->Next;
 }
 printf("\n");
 }
}

// Adding a Node at the Beginning of the List
void addBeg(int num)
{
 struct Node *temp;

 temp=(struct Node *)malloc(sizeof(struct Node));
 temp->Data = num;

 if (Head == NULL)
 {
 //List is Empty
 Head=temp;
 Head->Next=NULL;
 }
 else
 {
 temp->Next=Head;
 Head=temp;
 }
}

 struct Node
 {
 int Data;
 struct Node *Next;
 }*Head;

int main()
{
 Head=NULL; //Set HEAD as NULL
 addBeg(10); addBeg(8); addBeg(3);
 display(); //3 -> 8 -> 10
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Determining the length of our linked
list

//counting the number of elements in the list
int length()
{
 struct Node *cur_ptr;
 int count=0;

 cur_ptr=Head;

 while(cur_ptr != NULL)
 {
 cur_ptr=cur_ptr->Next;
 count++;
 }
 return(count);
}

// Adding a Node at the Beginning of the List
void addBeg(int num)
{
 struct Node *temp;

 temp=(struct Node *)malloc(sizeof(struct Node));
 temp->Data = num;

 if (Head == NULL)
 {
 //List is Empty
 Head=temp;
 Head->Next=NULL;
 }
 else
 {
 temp->Next=Head;
 Head=temp;
 }
}

 struct Node
 {
 int Data;
 struct Node *Next;
 }*Head;

int main()
{
 Head=NULL; //Set HEAD as NULL
 addBeg(10); addBeg(8); addBeg(3);
 //the length of this list is 3
 printf("Number of nodes: %d",length());
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Delete specific nodes to prevent
memory leaks

void delNodeLoc(int loc)
{
 struct Node *prev_ptr, *cur_ptr;
 int i;
 cur_ptr=Head;

 if(loc > (length()) || loc <= 0)
 { printf("\nDeletion of Node at given location is not possible\n "); }
 else
 {
 if (loc == 1) // If the location is starting of the list
 {
 Head=cur_ptr->Next;
 free(cur_ptr);
 return 0;
 }
 else
 {
 for(i=1;i<loc;i++)
 {
 prev_ptr=cur_ptr;
 cur_ptr=cur_ptr->Next;
 }

 prev_ptr->Next=cur_ptr->Next;
 free(cur_ptr);
 }
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Adding a node at the end of the linked
list

//Adding a Node at the end of the list
 void addEnd(int num)
 {
 struct Node *temp1, *temp2;

 temp1=(struct Node *)malloc(sizeof(struct Node));
 temp1->Data=num;

 // Copying the Head location into another node.
 temp2=Head;

 if(Head == NULL)
 {
 // If List is empty we create First Node.
 Head=temp1;
 Head->Next=NULL;
 }
 else
 {
 // Traverse down to end of the list.
 while(temp2->Next != NULL)
 temp2=temp2->Next;

 // Append at the end of the list.
 temp1->Next=NULL;
 temp2->Next=temp1;
 }
 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Source code

•Check out this excellent website: http://
codingfreak.blogspot.com/2009/08/implementation-of-singly-
linked-list-in.html

• It contains the full source of a linked list implementation

http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html
http://codingfreak.blogspot.com/2009/08/implementation-of-singly-linked-list-in.html

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Stacks

• LIFO (Last In First Out)

• A stack can have any data type as an
element, but is characterized by two
fundamental operations; push and
pop.

•The push operation adds a new item
to the top of the stack, or initializes
the stack if it is empty.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Queue

• FIFO (First In First Out)

•Is a kind of abstract data type in
which the entities in the collection
are kept in order and the only
operations on the collection are the
addition of entities to the rear
position and removal of entities from
the front position.

•In a FIFO data structure, the first
element added to the queue will be
the first one to be removed.

