
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Bitwise operators, Macros and
Enumeration

Reference: Russell Chapter 2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

List of bitwise operators in C

• Bitwise operations occur
on a per-bit level
• d = c&b
• All three variables are
declared as unsigned char
(assumed to be 8-bit
elements).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code example

0x0F = 0F16 = 1510 = 0000 11112

0x55 = 5516 = 8510 = 0101 01012

0101 01012 AND 0000 11112 = 0000 01012 = 0516 = 0x05

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code example

0x0F = 0F16 = 1510 = 0000 11112

0x55 = 5516 = 8510 = 0101 01012

0101 01012 OR 0000 11112 = 0101 11112 = 5F16 = 0x5F

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code example

0x0F = 0F16 = 1510 = 0000 11112

0x55 = 5516 = 8510 = 0101 01012

0101 01012 XOR 0000 11112 = 0101 01012 = 5A16 = 0x5A

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code example

0x55 = 5516 = 8510 = 0101 01012

0101 01012 << 3 = 1010 10002 = A816 = 0xA8 = 16810

Note that the previous operation overflowed (hence the
truncated data)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code example

0x55 = 5516 = 8510 = 0101 01012

~0101 01012 = 1010 10102 = AA16 = 0xAA

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Warning

• There is a difference between logical and bitwise operations.

• All the statements in the table above are perfectly legal, so the
compiler will not indicate an error (or even a warning).

• x && y will return a boolean variable...

• Since the variables x and y are both not 0, the logic AND will be 1.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macros & enumerated
datatypes

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macros

• It’s good practice to define all constants (except 0 and 1, where
meaning is obvious) in a header file or at the top of the current
source file.

• This is done by creating a macro with the preprocessor directive
statement #define.

• Before compilation occurs, the preprocessor replaces all
occurrences of the macro label with its defined value.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Enumeration

• Another way to define constants is via an enumeration.

• In the example the first statement defines the constant FALSE,
assigns it the default starting value of 0, and then increments the
value by one for each successive element in the list; in this case,
TRUE is defined as 1.

• Similarly, the constant JAN is defined with an explicit value of 1,
and then increments the value by one for each successive element
in its list. Thus DEC is defined as 12.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Enumeration example

enum month {january=1, february,
 march};

int main ()
{
 enum month current_month;
 current_month=january;

 printf("%d",current_month);
 //this will return 1

 printf("%d",march);
 //this will return 3
}

enum month {january=1, february,
 march} current_month;

int main ()
{
 current_month=january;

 printf("%d",current_month);
 //this will return 1

 printf("%d",march);
 //this will return 3
}

These two codes are the same... however in the right code
current_month is a global variable.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another enumeration example

int main()
{
 enum days{Jan=31, Feb=28, Mar=31,
 Apr=30, May=31, Jun=30,
 Jul=31, Aug=31, Sep=30,
 Oct=31, Nov=30, Dec=31};

 //define 'month' variable of type
 //'months'

 enum days month;

 printf("%d\n", month=Feb);
 //Assign integer value via an
 //alias... This will return 28
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Enumeration error

//This program will fail to compile because
//'Alex' is in both enum lists.
int main()
{
 enum People1 {Alex=0, Tracy, Kristian} Girls;
 enum People2 {William=0, Martin, Alex} Boys;

 switch (Boys)
 {
 case William:
 puts("William"); break;

 case Martin:
 puts("Martin"); break;

 case Alex:
 puts("Alex"); break;

 default:
 break;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another enumeration error

//This program will fail to compile because the
//preprocessor will change the FALSE to 1 on the enum statement....

#define RAIN 1

main()
{

 enum Weather {RAIN=0, SNOW} todays_weather;

 printf("Rain has a value of %d", RAIN);
 printf("Snow has a value of %d", SNOW);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C shortcuts

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Assignment operators

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Conditional expressions

The conditional expression,

((expr) ? trueValue : falseValue)

is a kind-of operator that evaluates any expression and returns a
different result based on if the expression is true (i.e., non-zero)

or false (i.e., 0).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Conditional expressions

• You should not use it directly as it makes the code harder to
read.

• It is useful when you are performing macro definitions:

