
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Literal constants, extern, typedef,
call-back functions and Macros

Reference: Russell Chapter 2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

External variable in C

•An external variable is a variable defined outside any function block.

•On the other hand, a local (automatic) variable is a variable defined
inside a function block.

•The extern keyword means "declare without defining".

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

External variable in C

•The variable GlobalVariable is
defined in File 1. In order to utilize
the same variable in File 2, it must be
declared.

•Regardless of the number of files, a
global variable is only defined once.

•If the program is in several source
files, and a variable is defined in file1
and used in file2 and file3, then
extern declarations are needed in
file2 and file3 to connect the
occurrences of the variable.

Remember the difference
between definition and
declaration.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another important C-topic: typedef

•The purpose of typedef is to assign alternative names to
existing types.

•Most often existing types whose standard declaration is
cumbersome or potentially confusing.

Both blocks do
the same thing

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Typedef and #define

•In most cases you can use the preprocessor statement:

‣#define Counter int

•Instead of the typedef statement:

‣typedef int Counter;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Other examples

The line:

typedef char Linebuf[81];

Defines a type called Linebuf, which is an array of 81 characters.
Subsequently declaring variables to be of type Linebuf, can be
done as:

Linebuf text, inputline;

This is equivalent to:

char text[81], inputline[81];

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

More complex typedef example

Here a struct MyStruct data type
has been defined:

To declare a variable of this type
the struct key word is required:

A typedef can be used to
eliminate the need for the struct:

Note that the structure
definition and typedef can instead
be combined into a single
statement:

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Practical example

• Some pieces of code must be very portable... as in, they must
work on many different architectures and environments.

• On some machines, the range of an int would not be adequate
for a BIGINT which would have to be re- typedef'd to be long.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Using typedef with pointers

•By defining a Node * typedef, it is assured that all the variables
will be pointer types.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Minor digression: review of
function pointers

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a function pointer?

•While a function is not a variable, it is a label and still has an
address.

•As a result, it is possible to define function pointers, which can
be assigned and treated as any other pointer variable.

•For example, they can be passed into other functions, in
particular, callbacks into Real-Time Operating Systems
(RTOSes) or hooks in an Interrupt Service Routine (ISR)
vector table.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why do we need a function pointer?

• A function pointer is a variable that stores the address of a
function that can later be called through that function pointer.

• Why do we need this?

• Sometimes we want the same function have different
behaviors at different times.

• Sometimes we just want to have a queue filled with
function pointers, so as we transverse the queue, we merely
execute the a function without doing any extra operations.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function Pointer Syntax

void (*foo)(int);

• In this example, foo is a pointer to a function taking one
argument, an integer, and that returns void.

• It's as if you're declaring a function called "*foo", which takes an
int and returns void.

• If *foo is a function, then foo must be a pointer to a function.
(Similarly, a declaration like int *x can be read as *x is an int, so
x must be a pointer to an int.)

• The declaration for a function pointer is similar to the
declaration of a function but with (*func_name) where you'd
normally just put func_name.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Initializing function pointers

#include <iostream>
using namespace std;

void my_int_func(int x)
{ cout<<x<<endl; }

int main()
{
 void (*foo)(int);
 //the ampersand(&) is optional
 foo = &my_int_func;

 return 0;
}

• To initialize a function
pointer, you must give it the
address of a function in your
program.

• The syntax is like any other
variable.

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Using a function pointer

#include <iostream>
using namespace std;

void my_int_func(int x)
{ cout<<x<<endl; }

int main()
{
 void (*foo)(int);
 foo = &my_int_func;

 // calling my_int_func
 //(note that you do not need
 //to write (*foo)(2)
 foo(2);

 //but you can... if you want
 (*foo)(2);

 return 0;
}

• To call the function pointed
to by a function pointer, you
treat the function pointer as
though it were the name of
the function you wish to call.

• The act of calling it performs
the dereference; there's no
need to do it yourself.

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include <iostream>
using namespace std;

// The four arithmetic operations
float Plus (float a, float b) { return a+b; }
float Minus (float a, float b) { return a-b; }
float Multiply(float a, float b) { return a*b; }
float Divide (float a, float b) { return a/b; }

// Solution with a switch-statement
// <opCode> specifies which operation to execute
void Switch(float a, float b, char opCode)
{
 float result;

 // execute operation
 switch(opCode)
 {
 case '+' : result = Plus (a, b); break;
 case '-' : result = Minus (a, b); break;
 case '*' : result = Multiply (a, b); break;
 case '/' : result = Divide (a, b); break;
 }

 // display result
 cout << "Switch: 2+5=" << result << endl;
}

int main()
{
 Switch(2, 5, '+');
}

• The main function performs
the arithmetic operation
through an intermediate
function (switch).

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include <iostream>
using namespace std;

// The four arithmetic operations
float Plus (float a, float b) { return a+b; }
float Minus (float a, float b) { return a-b; }
float Multiply(float a, float b) { return a*b; }
float Divide (float a, float b) { return a/b; }

// Solution with a function pointer
// <pt2Func> is a function pointer and points to
// a function which takes two floats and returns a
// float. The function pointer "specifies" which
// operation shall be executed.

void Switch_With_Function_Pointer(float a, float b,
float (*pt2Func)(float, float))
{
// call using function pointer
 float result = pt2Func(a, b);

 cout <<"Switch replaced by func. ptr.: 2-5=";
 // display result
 cout << result << endl;
}

int main()
{
 Switch_With_Function_Pointer(2, 5, &Minus);
}

• Solution with a function
pointer

• The function pointer
"specifies" which operation
shall be executed

Note: this is C++ code, and it
will not work on the Arduino

(especially the cout, namespace
and iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to use arrays of function
pointers ?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• These are two silly
functions that take 3
arguments, print something
on the screen and returns a
float... which is also the first
argument

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• Here I am creating an
array of 10 positions, that
will store a pointers to a
function that can take a
(float, char, char) as
arguments.

• Initially the function
pointers are all set to
NULL.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• Here I am adding the
addresses of each function
to a particular element of
the funcArr array

• Make sure you don’t call
the elements that are not
assigned!

• For example, element #4
and element #5 are still
NULL... which point to
nothing.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• I am calling the function
that is on the position #1 of
the array, with the (12,’a’,’b’)
as the arguments.

• This is the short form
notation

• Of course, the DoMore
function will return
something, but we are not
storing it anywhere.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• This is the “correct”, albeit
confusing, form of calling
the function pointer.

• The return_val will keep
the return value of the
function.

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#include<iostream>
using namespace std;

int DoIt (float number, char char1, char char2)
{ cout<<"... inside DoIt()"<<endl; return(number); }

int DoMore (float number, char char1, char char2)
{ cout<<"... inside DoMore()"<<endl; return (number); }

int main()
{
 // define arrays and ini each element to NULL,
 // <funcArr> is an array with 10 pointers to
 // functions which return an
 // int and take a float and two char

 int (*funcArr[10])(float, char, char) = {NULL};

 // assign the function's address 'DoIt' and 'DoMore'
 funcArr[0] = funcArr[2] = &DoIt;
 funcArr[1] = funcArr[3] = &DoMore;

 // calling a function using an index to address the
 // function pointer
 // short form for calling function (position #1)
 funcArr[1](12, 'a', 'b');

 // "correct" way of calling function (position #0)
 int return_val=(*funcArr[0])(12, 'a', 'b');
 (*funcArr[1])(56, 'a', 'b');

 cout<<(*funcArr[0])(34, 'a', 'b')<<endl;
}

• This just displays the
return value of the function.

• Warning: If you call a
position that hasn’t a valid
function pointer (e.g.
position #5 in the funcArr
for example) you will get a
segmentation fault!

Note: this is C++ code, and
it will not work on the
Arduino (especially the
cout, namespace and

iostream library)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Return to typedef

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Typedef and functions

•In order defined a function, you must include its return
value and the type of each parameter is accepts.

•When you typedef such a definition, you give the function a
“friendly name” which makes it easier to create and reference
pointers using that definition.

•A function pointer is like any other pointer, but it points to the
address of a function instead of the address of data.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of typedef and functions

So for example assume you have a function:

• Can be used to point to this doMulitplication function.

• It is simply defining a pointer to a function which returns a float
and takes two parameters, each of type float. This definition has
the friendly name pt2Func.

•Note that pt2Func can point to ANY function which returns a
float and takes in 2 floats.

...Then the following typedef:

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of typedef and functions

So for example assume you have a function:

... And the following typedef:

So you can create a pointer which points to
the doMultiplication function as follows:

...And you can invoke the function using this
pointer as follows:

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Callback functions

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of a callback function

• A callback is a
reference to a piece of
executable code, that is
passed as an argument
to other code.

•Rand is a function that
returns a random
integer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of a callback function

• PrintTwoNumbers has
a function as an
argument.

• This function
(overNineThousand)
returns an int.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of a callback function

• PrintTwoNumbers has a
function as an argument.

• This function
(meaningOfLife) also
returns an int.

• The final output could
be for example:

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Two advantages of using callbacks

• Rather than printing the
same value twice, the
PrintTwoNumbers calls the
callback as many times as it
requires.

• The calling function can
pass whatever parameters
it wishes to the called
functions (not shown). The
code that passes a callback
to a calling function does
not need to know the
parameter values that will
be passed to the function.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macros

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a macro?

•A macro is a fragment of code which has been given a name.

•Whenever the name is used, it is replaced by the contents of
the macro.

•There are two kinds of macros:

‣Object-like macros resemble data objects when used.

‣Function-like macros resemble function calls.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Preprocessor directives

• Preprocessing involves making changes to the text of the source
program.

• Preprocessing is done before actual compilation begins.

• The preprocessor doesn’t know (very much) C.

• Major kinds of preprocessor directives:
Macro definition
Conditional compilation
File inclusion

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Preprocessor directives

• Rules for using preprocessor directives:

‣ Must begin with a #.
‣ May contain extra spaces and tabs.
‣ End at the first new-line character, unless continued using \.
‣ Can appear anywhere in a program.
‣ Comments may appear on the same line.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simple macros

• Form of a simple macro:

#define identifier replacement-list

• The replacement list can be any sequence of C tokens, including
identifiers, keywords, numbers, character constants, string literals,
operators, and punctuation.

• Uses of simple macros:
‣Defining “manifest constants”
‣Making minor changes to the syntax of C
‣Renaming types
‣As conditions to be tested later by the preprocessor

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Object-like macros

•An object-like macro is a simple identifier which will be
replaced by a code fragment.

•It is called object-like because it looks like a data object in code
that uses it.

•They are most commonly used to give symbolic names to
numeric constants.

•You create macros with the #define directive

‣#define BUFFER_SIZE 1024
‣#define DEBUG 1

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Object-like macro example

#define BUFFER_SIZE 1024

Defines a macro named BUFFER_SIZE as an abbreviation for
the token 1024. If somewhere after this #define directive there
comes a C statement of the form:

foo = (char *) malloc (BUFFER_SIZE);

Then the C preprocessor will recognize and expand the macro
BUFFER_SIZE. The C compiler will see the same tokens as it
would if you had written:

foo = (char *) malloc (1024);

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another object-like macro example

• The macro's body ends at the end of the #define line.

• You may continue the definition onto multiple lines, if necessary,
using backslash-newline. When the macro is expanded, however,
it will all come out on one line. For example,

#define NUMBERS 1, \

2, \

3

int x[] = { NUMBERS };

•When expanded becomes...

int x[] = { 1, 2, 3 };

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macros expand sequentially

•The C preprocessor scans your program sequentially.

•Macro definitions take effect at the place you write them.
Therefore, the following input to the C preprocessor

foo = X;

#define X 4

bar = X;

... produces

foo = X;

bar = 4;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macros can be expanded multiple
times

• When the preprocessor expands a macro name, the macro's
expansion replaces the macro invocation, then the expansion is
examined for more macros to expand. For example,

#define TABLESIZE BUFSIZE

#define BUFSIZE 1024

TABLESIZE

... produces

1024

• Because, initially produces BUFSIZE, and BUFSIZE becomes 1024.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Warning

•Warning: Don’t put any extraneous symbols in a macro
definition; these will become part of the replacement list:

‣#define N = 100

‣int a[N]; /* becomes int a[= 100]; */

‣#define N 100;

‣int a[N]; /* becomes int a[100;]; */

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Advantages and disadvantages of
parameterized macros

Advantages of using a parameterized macro instead of a function:

•The compiled code will execute more rapidly.

•Macros are “generic.”

Disadvantages of using a parameterized macro instead of a function:

•The compiled code will often be larger.

•Arguments aren’t type-checked.

•It’s not possible to have a pointer to a macro.

•A macro may evaluate its arguments more than once, causing
subtle errors.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function-like Macros

•You can also define macros whose use looks like a function call.

•To define a function-like macro, you use the same #define
directive, but you put a pair of parentheses immediately after the
macro name.

•For example,

#define lang_init() c_init()

lang_init()

... produces

c_init()

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Be careful

•If you put spaces between the macro name and the parentheses
in the macro definition, that does not define a function-like
macro, it defines an object-like macro whose expansion happens
to begin with a pair of parentheses.

#define lang_init () c_init()

lang_init()

... produces

() c_init()()

•The first two pairs of parentheses in this expansion come from
the macro. The third is the pair that was originally after the
macro invocation.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macro arguments

•Function-like macros can take arguments, just like true
functions.

•To define a macro that uses arguments, you insert parameters
between the pair of parentheses in the macro definition that
make the macro function-like.

•The parameters must be valid C identifiers, separated by
commas and optionally whitespace.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macro argument example

#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))

x = MIN(a, b);

... produces

x = ((a) < (b) ? (a) : (b));

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macro argument example

#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))

y = MIN(1, 2);

... produces

y = ((1) < (2) ? (1) : (2));

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Macro argument example

#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))

z = MIN(a + 28, *p);

... produces

z = ((a + 28) < (*p) ? (a + 28) : (*p));

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Empty macro arguments

•You can leave macro arguments empty; this is not an error to the
preprocessor (but many macros will then expand to invalid
code).

•You cannot leave out arguments entirely; if a macro takes two
arguments, there must be exactly one comma at the top level of
its argument list. Here are some silly examples using min:

 min(, b) ==> (() < (b) ? () : (b))

 min(a,) ==> ((a) < () ? (a) : ())

 min(,) ==> (() < () ? () : ())

 min((,),) ==> (((,)) < () ? ((,)) : ())

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Small macro arguments nuance

• With macro argument what is expanded is what is inside the
parenthesis.

• Macro parameters appearing inside string literals are not
replaced by their corresponding actual arguments.

#define foo(x) x, "x"

foo(bar) ==> bar, "x"

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Concatenation

•It is often useful to merge two tokens into one while
expanding macros.

•This is called token concatenation.

•The `##' preprocessing operator performs token pasting.

•When a macro is expanded, the two tokens on either side of
each `##' operator are combined into a single token, which
then replaces the `##' and the two original tokens in the
macro expansion.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Concatenation example

struct command
{
 char *name;
 void (*function) (void);
};

struct command commands[] =
{
 { "quit", quit_command },
 { "help", help_command },
 (...)
};

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{
 COMMAND (quit),
 COMMAND (help),
 (...)
};

Consider a C program that interprets named commands. There
probably needs to be a table of commands, perhaps an array of
structures declared as follows:

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Standard predefined macros

• There are some standard predefined macros, available with all
compilers.

• Their names all start with double underscores.

• __FILE__ : Expands to the name of the current input file, in the
form of a C string constant. T

• __LINE__: Expands to the current input line number, in the
form of a decimal integer constant. Its “definition” changes with
each new line of source code.

• __DATE__ , __TIME__ , __STDC_VERSION__ , ...

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of predefined macros

 #include <stdio.h>

int main()
{
 printf ("filename = %s\n",__FILE__);
 printf ("current line = %d\n",__LINE__);
 printf ("date = %s\n",__DATE__);
 printf ("time = %s\n",__TIME__);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Defining, re-defining and un-defining
macros

• #define FOO 4

• x = FOO; //expands to x = 4;

• #undef FOO

• x = FOO; //expands to x = FOO;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Conditional compilation

•The #if directive tests an expression to determine whether or
not a particular section of text should be included in a program.
The #endif directive marks the end of the section:

#if constant-expression

(..)

#endif

•The operator defined can be used in an #if directive:

#if defined(identifier)

…

#endif

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Conditional compilation

•The #ifdef directive combines #if with defined:

#ifdef identifier

…

#endif

•The #ifndef directive is the opposite of #ifdef:

#ifndef identifier

…

#endif

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Conditional compilation

•#if, #ifdef, and #ifndef all allow #elif and #else clauses:

if-header

…

#elif constant-expression

…

#else

…

#endif

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Uses of conditional compilation

•Writing code to run on different machines or under different
operating systems:

#if defined(WIN32)

…

#elif defined(MAC_OS)

…

#elif defined(LINUX)

…

#endif

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Uses of conditional compilation

•Including debugging code:

#ifdef DEBUG

printf("Value of i: %d\n", i);

printf("Value of j: %d\n", j);

#endif

•Temporarily disabling code that contains comments:

#if 0

bkg_color = BLACK; /* set background color */

#endif

•Protecting header files from being included more than once.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

File inclusion

•The #include directive causes the entire contents of a file to be
included in a program.

•Files included into a program are called header files (or include files).

•By convention, header files have the extension .h.

•One form of #include is used for files that belong to the C library:

•#include <filename>

•Most compilers will search the directory (or directories) where
system header files are kept.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

File inclusion

•The other form of #include is used for files created by the
programmer:

#include "filename"

•Most compilers will search the current directory, then search the
directory (or directories) where system header files are kept.

•File names may include a drive specifier and/or a path:

#include <sys\stat.h>

#include "utils.h"

#include "..\include\utils.h"

#include "d:utils.h"

#include "\cprogs\utils.h"

