Survey of software architectures:
round-robin

Reference: Simon chapter 5

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Survey of software architectures

* We are going to discuss the four basic software approaches we
can implement in an embedded systems.

* A software architecture is just how our source code is arranged.

* The most important factor that determines which architecture
will be the most appropriate is how much control you need to
have over system response.

* A system that must respond rapidly to many different events
ought to be implemented very differently from a system with just
a single event and very small response time.

* Four architectures: round-robin, round-robin with interrupts,
function-queue-scheduling, and real-time operating system.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin

void main ()

{
while (TRUE)

{

if (!! I/O Device A needs service) {

* Round-robin is the simplest
imaginable architecture.

° There are no interrupts. 'l Take care of I/0O Device A

* The main loop simply checks
each of the I/O devices in
turn and services any that
need service.

if (!! I/O Device B needs service) {
'l Take care of I/0 Device B

}
(...

if (! I/0 Device Z needs service) {

* No interrupts, no shared
data, no latency concerns

'l Take care of I/0 Device Z

}
}//end while (TRUE)

} //end void main ()

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin usage example

* | want to create a software program for an
embedded system that runs a digital
multimeter.

* A digital multimeter measures resistance or
current or voltage in several different
ranges.

* A multimeter has two measuring probes, a
digital display, and a big rotary switch that
selects measurement and range.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin inside a digital
multimeter

* The system makes continuous
measurements and changes the
display to reflect the most recent
measurement.

* Each time around its loop, the
software checks the position of the
e ‘ rotary switch, branches to the
e Uomw - on h appropriate code selection and
- writes the results to the display.

CAT Il 300V |
CAT | 600V

L

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE

Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Digital multimeter code

vold vDigitalMultiMeterMain () {

enum {OHMS1,0OHMS10,...VOLTS100) eSwitchPosition;
while (TRUE)

{

eSwitchPosition = !! Read switch position
switch (eSwitchPosition) {

case OHMS 1:
!'" Read hardware to measure ohms
break;
case OHMS 10:
!'" Read hardware to measure ohms
break;
(...)
case VOLTS 100:
! Read hardware to measure volts
break;

}
'l Write result to display

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Problems with round robin

* Round-robin architecture has only one advantage over other
architectures: simplicity!

* |t has some problems that make it inadequate for many systems:

|. If any one device needs response in a limited time, the system
may not work.

2. The system can respond really slowly.
3. The architecture is very susceptible to code changes.

* Because of these shortcomings, a round-robin architecture is
probably suitable only for very simple devices .

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Issue #1: If you need fast response
time round robin is not the way to go

void main ()

{
while (TRUE)

{

if (!! I/O Device A needs service) {

* |f device Z can wait no longer
than 7 milli-seconds for service

e |f device A and B each take 5
milli-seconds to run.

!'! Take care of I/0 Device A

}

if (!! I/O Device B needs service) {

* [f all three devices need service,
and the processor starts with
device A, then the processor will
not have time to reach device C
quickly enough.

'l Take care of I/0 Device B
¥
(...)

if (!! TI/0 Device 7Z needs service) {
'l Take care of I/0O Device 7
}
}//end while (TRUE)
} //end void main ()

* ...Sure you can squeeze some
msecs by changing device order.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Issue #2: Slow system response

e If it takes 3 seconds for a void vDigitalMultiMeterMain () {
. . 1, OHMS1 ...VOLTS1] hP 1t] ;
P&I’thUlaI’ functlon to run... enum {OHMS1, OHMS10, OLTS100) eSwitchPosition

while (TRUE)
{
¢ ...then the S)'Stem response eSwitchPosition = !! Read switch position

to the rotary switch could switch (eSwitchPosition) {
case OHMS 1:

be as bad as 3 seconds. 'l Read hardware to measure ohms
break;

* Sure, it works but its a lousy case OHMS 10:
product. !'' Read hardware to measure ohms
, break;
(...)
case VOLTS 100:
!' Read hardware to measure volts
break;

}
' Write result to display

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Issue #3: Round robin is a fragile
architecture

* Even if we manage to tune up the system so that the
microprocessor gets around the loop quickly enough to satisfy all
requirements...

* Adding a single additional device may break everything.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin with interrupts

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin with interrupts

* Interrupt routines deal with the very urgent needs of the
hardware and then set flags

* The main loop polls the flags and does any follow-up processing
required by the interrupts.

* This architecture gives you more control over priorities, since
the processor can now stop the main loop and resolve the
Interrupts.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Comparing round robin with
interrupts and without interrupts

R ound-robin R ound-robin

e Advantages: Same advantages . with interrupts
High-priority

of use interrupts over polling processing

(priority control) I Device A ISR
Device B ISR

e Disadvantages: a lot of data is . Device £ 5%
Everything Device D ISR

shared amongst many Rea i

different interrupt routines Device Z ISR

which will potentially create ! All Task Code
s e

shared data problems. i

processing

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin with interrupts example

BOOL fDeviceA = FALSE;
BOOL fDeviceB = FALSE;

(...)
BOOL fDeviceZ = FALSE;

void

{

'l Take care of I/0 Device A

fDeviceA = TRUE;
}

vold interrupt vHandleDeviceB

{

'l Take care of I/0O Device
fDeviceR = TRUE;
¥

vold 1nterrupt vHandleDeviceZ

{

'l Take care of I/0O Device
fDeviceR = TRUE;

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

interrupt vHandleDeviceA

vold main ()
{
while (TRUE) {
1if (fDeviced) {
fDeviceA = FALSE;
0) !'! Handle I/0 Device A
}
if (fDeviceB) {
fDeviceB = FALSE;
!'! Handle I/O Device B

}
(...)
if (fDeviceZz) {
fDeviceZ = FALSE;
!'! Handle I/0 Device 7Z

}
} //end of while

}

(TRUE)

WESTERN NEW ENGLAND
UNIVERSITY

Round robin with interrupts example

BOOL fDeviceA = FALSE;
BOOL fDeviceB = FALSE;

(...)
BOOL fDeviceZ = FALSE;

vold 1nterrupt vHandleDeviceA ()

{
'l Take care of I/0 Device A -

fDeviceA = TRUE;
}

vold interrupt vHandleDeviceB

{
'l Take care of I/0 Device B
fDeviceR = TRUE;

}

vold interrupt vHandleDeviceZ ()

{

'l Take care of I/0 Device B
fDeviceR = TRUE;

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

* Whenever an |/O is ready,
an interrupt will occur.

* This interrupt will set a
boolean variable which
mentions that some |/O
operation needs to be done.

WESTERN NEW ENGLAND

Round robin with interrupts example

* The main loop checks the
boolean variable to see if
there is some |/O operation
that needs to be done.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

volid main ()
{
while (TRUE) {
1if (fDeviced) {
fDeviceA = FALSE;
!'! Handle I/0 Device A
}
1f (fDeviceB) {
fDeviceB = FALSE;
!'! Handle I/O Device B

}
(...)
if (fDeviceZz) {
fDeviceZ = FALSE;
!'! Handle I/0 Device 7Z

}
} //end of while

}

(TRUE)

WESTERN NEW ENGLAND
UNIVERSITY

Isn’t this the same as normal round-
robin? Whats the point

* The point is that | can add “important” task code into the
Interrupt service routine.

* This will guarantee that “important devices” are dealt first.

* The problem is that, the lower priority devices will suffer
increased response times.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Another round-robin-with-interrupts
example: cordless bar-code scanner

* The bar-code scanner is essentially a device that gets the data
from the laser that reads the bar codes and sends that data out
on the radio.

* |n this system the only real response requirements are to service
the hardware quickly enough. Reading the data from the scanner
is the priority... The rest may take its time.

* The task code processing will get done quickly enough in a
round-robin loop.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Timing example

e [f A,B and Z all take 200msec
each

* [f A,B and Z all interrupt at
same time when the s
processor is’here jthe task code
for Z may have to wait 400msec
until it can be executed.

* The only way to avoid this is by
putting the task code for device Z
into an interrupt routine with an
higher priority.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

vold main

{

}

while (TRUE) {
if (fDeviced) {
fDeviceA = FALSE;

!'! Handle I/0 Device A

(fDeviceB) {
fDeviceB = FALSE;
!'! Handle I/O Device B
}
(...)
if (fDeviceZz) {
fDeviceZ = FALSE;
!'! Handle I/0 Device 7Z
}
} //end of while (TRUE)

WESTERN NEW ENGLAND
UNIVERSITY

Round-robin-with-interrupts
architecture is not perfect

* Round-robin-with-interrupts architecture does not work well in
the following systemes:

* A laser printers; since calculating the locations where the black
dots go is very time-consuming. Also, laser printers have many
other processing requirements, so it is impossible to make sure
that low-priority interrupts are serviced quickly enough.

* A tank-monitoring system; one way to calculate how much water
is in the tanks is to put all code inside interrupt service routines.
This is not a good approach and a more sophisticated
architecture is required for this system as well.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Round robin with interrupts: a system
example

* The round-robin-with-interrupts architecture is suitable for many systems,
ranging from the fairly simple to the surprisingly complex.

* One example is the communications bridge, a device with two ports that
forwards data traffic received on the first port to the second and vice versa.

* Assume the data on one of the ports is encrypted and that it is the job of
the bridge to encrypt and decrypt the data as it passes through it.

| Dataforwaded |

- . |
7 ! Y 2 y \
4 2 N
. . . \
Communication | VAT ‘
Link A N
X ; it
N,
R B B

" Data forwarded
from A to B.

Communication
Link B (with
encrypted data)

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Bridge assumption #|

* Whenever a character is received
at one end, it causes an interrupt.

* That interrupt must be serviced
reasonably quickly to read the
character out of the I/O hardware
before the next character arrives.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Commu
Link A

nication R R
\
/

" Data forwarded

| Data forwarded Rt

frothoA

Y v

v

\

¥

k.
_ :{:
)

G

from A to B.

WESTERN NEW ENGLAND
UNIVERSITY

Communication
Link B (with
encrypted data)

Bridge assumption #2

* The microprocessor must write to
the I/O one character at a time.

* When a character is being written,
the communication link is busy.

* An interrupt will indicate that the
character is done transmitting (and
the link is no longer busy).

* There is no hard deadline by which
the character must be written in
hardware.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

e
S R S P BT u;m..;/
- - - : 5

; Dét'é forwarded o
from BitolAd Gieiin 8

Communication

; SN SV ».,I\' :?:
i ! oo ; y RS ?if
‘ / ‘ ; y . : X< ! _ . . .
Communication LRI SRR Link B (with
Link A N N e e A e YR encrypted data)
/ \ T len ISR A i
y N\ iy

| Data forwarded”
fro;ri A to B.

WESTERN NEW ENGLAND

Bridge assumption #3

* We have routines that will read and
erte CharaCte r's to q UCucs, an d to A P R e 7
: : L e
test if a queue is empty. e
.) | \ ; T Communication
* We call these routines from the C\/f W Link B (with
task code as well as from the Link A s e
Interrupt routines.

" Dataforwarded”
from A to B. ;

* These routines deal with shared
data problems appropriately.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Bridge assumption #4

* The encryption routine can
encrypt just a single character at a
time.

* The decryption routine can
decrypt just a single character at a
time.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Commu
Link A

nication R R
\
/

' Data forwarded

i Data forwarded STt
‘.~._,‘ '\u A / i

frothoA

; ¢
:
¥
.

s
:
(!
15

L4

fromAtoB . A .'

WESTERN NEW ENGLAND
UNIVERSITY

Communication
Link B (with
encrypted data)

Code (Part #1)

typedef struct

{

char chQueue [QUEUE SIZE];

int iHead; //Place to add next item
int iTail; // Place to read next item
} QUEUE;

static QUEUE gDataFromLinkA;
static QUEUE gDataFromLinkB;
static QUEUE gDataToLinkA;
static QUEUE gDataToLinkB;
static BOOL fLinkAReadyToSend
static BOOL fLinkBReadyToSend

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

volid 1nterrupt vGotCharacterOnLinkA () {
char ch;
ch = !'! Read character from COMM A;
vQueueAdd (&gbhataFromLinkA, ch);

}

volid interrupt vGotCharacterOnLinkB () {

char ch;
ch = !! Read character from COMM B;
vQueueAdd (&gDataFromLinkB, ch);

}

vold interrupt vSentCharacterOnLinkA () {
fLinkAReadyToSend = TRUE;

}

vold interrupt vSentCharacterOnLinkB () {
fLinkBReadyToSend = TRUE;

}
WESTERN NEW ENGLAND

Code (Part #1)

volid 1nterrupt vGotCharacterOnLinkA () {

char ch;
(éh = |1 Read character from COMM A;)

i vQueueAdd (&gDataFromLinkA, ch);
* The main loop checks the }
boolean variable to see if

there is some |/O operation
char ch;

that needs to be done. ch = !! Read character from COMM B;
(&QueueAdd (sgDataFromLinkB, ch)D

}

volid interrupt vGotCharacterOnLinkB () {

vold interrupt vSentCharacterOnLinkA () {

* The interrupt routine puts
fLinkAReadyToSend = TRUE;

the received character on }
the appropriate queue.

vold interrupt vSentCharacterOnLinkB () {
fLinkBReadyToSend = TRUE;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Code (Part #2)

vold main (void)

{

char ch;

/* Initialize the queues */
(&gDataFromLinkA) ;

vQueuelnitialize (&gDataFromLinkB) ;
(

vQueuelnitialize

&gDataToLinkA) ;
(&gbhataToLinkB) ;
*/

vQueuelnitialize
vQueuelnitialize
/* Enable the interrupts.
()7

(TRUE) {

()7

()7

enable
while

vEncrypt
vDecrypt

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

1f (fLinkAReadyToSend &&

fQueueHasData (&gDhataTolLinkA))

{

ch = chQueueGetData
disable () ;

!'Send character to Link A
fLinkAReadyToSend = FALSE;

()7

(&gbhataToLinkA) ;

enable
}
1f (fLinkBReadyToSend &&

fQueueHasData (&gDataToLinkB))

{

ch = chQueueGetData
disable () ;
''Send ch to
fLinkBReadyToSend =

()7

(&gbataToLinkB) ;

Link B
FALSE;
enable

}
}//end of while (TRUE)

}//end of of main (void)

WESTERN NEW ENGLAND
UNIVERSITY

Code (Part #2)

vold main (void)
{
char ch;
/* Initialize the queues */

vQueuelnitialize (&gDataFromLinkA) ;

(
vQueuelnitialize (&gDataFromLinkB) ;
(

vQueuelnitialize (&gDataToLinkA);
vQueuelnitialize (&gDataToLinkB);
/* Enable the interrupts. */

enable () ;
while (TRUE) {

Zizzgit 8 «—___ |*Task code calls vE!'lcrypt()

and vDecrypt() which reads
queues, encrypt/decrypt data
and updates destination
queues.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Code (Part #2)

* fLinkAReadyToSend keep
track of weather the I/O is
ready to send characters
over the two communication

links.
e FALSE means that the I/O

hardware is now busy.

* When the character is

ready to be sent, an interrupt
will set fLinkAReady ToSend
to TRUE.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

—

1f (fLinkAReadyToSend &&

fQueueHasData (&gDhataTolLinkA))
{
ch = chQueueGetData
disable () ;
!'Send character to Link A
fLinkAReadyToSend = FALSE;

()7

(&gbhataToLinkA) ;

enable

}
1f (fLinkBReadyToSend &&

fQueueHasData (&gDataToLinkB))

{

ch = chQueueGetData
disable () ;
''Send ch to
fLinkBReadyToSend =

()7

(&gbataToLinkB) ;

Link B
FALSE;
enable

}
}//end of while (TRUE)

}//end of of main (void)

WESTERN NEW ENGLAND
UNIVERSITY

Code (Part #2)

* Bottom line: What is
really important is that the
arriving data (on either
communication node) is stored
In 2 queue.

* This is done through
Interrupts.

* Everything else is secondary.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

1f (fLinkAReadyToSend &&

fQueueHasData (&gDhataTolLinkA))

{

ch = chQueueGetData
disable () ;

!'Send character to Link A
fLinkAReadyToSend = FALSE;

()7

(&gbhataToLinkA) ;

enable
}
1f (fLinkBReadyToSend &&

fQueueHasData (&gDataToLinkB))

{

ch = chQueueGetData
disable () ;
''Send ch to
fLinkBReadyToSend =

()7

(&gbataToLinkB) ;

Link B
FALSE;
enable

}
}//end of while (TRUE)

}//end of of main (void)

WESTERN NEW ENGLAND
UNIVERSITY

Code (Part #3)

void vEncrypt (void)
{

char chClear;

void vDecrypt (void)
{
char chClear;

char chCryptic; char chCryptic;

// While there are chars from port A // While there are chars from port B

while (fQueueHasData (&gbhataFromLinkA))

{
//Encrypt them and put them on

while (fQueueHasData
(&gbhataFromLinkB))

{

//queue for port B //decrypt them and put them on

chClear = chQueueGetData
(&gDataFromLinkA) ;

//queue for port A

chCryptic = chQueueGetData
(&gDataFromLinkB) ;

chClear = !'! Do decryption
vQueueAdd (&gbhataTolLinkA, chClear) ;

}

chCryptic = !! Do encryption
vQueueAdd (&gbataToLinkB, chCryptic);
}

——

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

