
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Survey of software architectures:
round-robin

Reference: Simon chapter 5

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Survey of software architectures

• We are going to discuss the four basic software approaches we
can implement in an embedded systems.

• A software architecture is just how our source code is arranged.

• The most important factor that determines which architecture
will be the most appropriate is how much control you need to
have over system response.

• A system that must respond rapidly to many different events
ought to be implemented very differently from a system with just
a single event and very small response time.

• Four architectures: round-robin, round-robin with interrupts,
function-queue-scheduling, and real-time operating system.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin

• Round-robin is the simplest
imaginable architecture.

• There are no interrupts.

• The main loop simply checks
each of the I/O devices in
turn and services any that
need service.

• No interrupts, no shared
data, no latency concerns

void main ()
{
 while (TRUE)
 {

if (!! I/O Device A needs service){
 !! Take care of I/O Device A
 }

 if (!! I/O Device B needs service) {
 !! Take care of I/O Device B
 }
 (...)

 if (!! I/O Device Z needs service){
 !! Take care of I/O Device Z
 }
 }//end while (TRUE)
} //end void main()

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin usage example

• I want to create a software program for an
embedded system that runs a digital
multimeter.

• A digital multimeter measures resistance or
current or voltage in several different
ranges.

• A multimeter has two measuring probes, a
digital display, and a big rotary switch that
selects measurement and range.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin inside a digital
multimeter

• The system makes continuous
measurements and changes the
display to reflect the most recent
measurement.

• Each time around its loop, the
software checks the position of the
rotary switch, branches to the
appropriate code selection and
writes the results to the display.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Digital multimeter code

void vDigitalMultiMeterMain(){
enum {OHMS1,OHMS10,...VOLTS100) eSwitchPosition;
while (TRUE)
{
 eSwitchPosition = !! Read switch position

switch (eSwitchPosition) {
 case OHMS_1:
 !! Read hardware to measure ohms
 break;
 case OHMS_10:
 !! Read hardware to measure ohms
 break;
 (...)
 case VOLTS_100:
 !! Read hardware to measure volts
 break;
 }
 !! Write result to display
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Problems with round robin

• Round-robin architecture has only one advantage over other
architectures: simplicity!

• It has some problems that make it inadequate for many systems:

1. If any one device needs response in a limited time, the system
may not work.

2. The system can respond really slowly.

3. The architecture is very susceptible to code changes.

• Because of these shortcomings, a round-robin architecture is
probably suitable only for very simple devices .

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Issue #1: If you need fast response
time round robin is not the way to go

• If device Z can wait no longer
than 7 milli-seconds for service

• If device A and B each take 5
milli-seconds to run.

• If all three devices need service,
and the processor starts with
device A, then the processor will
not have time to reach device C
quickly enough.

• ... Sure you can squeeze some
msecs by changing device order.

void main ()
{
 while (TRUE)
 {

if (!! I/O Device A needs service){
 !! Take care of I/O Device A
 }

 if (!! I/O Device B needs service) {
 !! Take care of I/O Device B
 }
 (...)

 if (!! I/O Device Z needs service){
 !! Take care of I/O Device Z
 }
 }//end while (TRUE)
} //end void main()

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Issue #2: Slow system response

• If it takes 3 seconds for a
particular function to run...

• ... then the system response
to the rotary switch could
be as bad as 3 seconds.

• Sure, it works but its a lousy
product.

void vDigitalMultiMeterMain(){
enum {OHMS1,OHMS10,...VOLTS100) eSwitchPosition;
while (TRUE)
{
 eSwitchPosition = !! Read switch position

switch (eSwitchPosition) {
 case OHMS_1:
 !! Read hardware to measure ohms
 break;
 case OHMS_10:
 !! Read hardware to measure ohms
 break;
 (...)
 case VOLTS_100:
 !! Read hardware to measure volts
 break;
 }
 !! Write result to display
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Issue #3: Round robin is a fragile
architecture

• Even if we manage to tune up the system so that the
microprocessor gets around the loop quickly enough to satisfy all
requirements...

• Adding a single additional device may break everything.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin with interrupts

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin with interrupts

• Interrupt routines deal with the very urgent needs of the
hardware and then set flags

• The main loop polls the flags and does any follow-up processing
required by the interrupts.

• This architecture gives you more control over priorities, since
the processor can now stop the main loop and resolve the
interrupts.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Comparing round robin with
interrupts and without interrupts

• Advantages: Same advantages
of use interrupts over polling
(priority control)

• Disadvantages: a lot of data is
shared amongst many
different interrupt routines
which will potentially create
shared data problems.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin with interrupts example

BOOL fDeviceA = FALSE;
BOOL fDeviceB = FALSE;
(...)
BOOL fDeviceZ = FALSE;

void interrupt vHandleDeviceA ()
{
 !! Take care of I/O Device A
 fDeviceA = TRUE;
}
void interrupt vHandleDeviceB ()
{
 !! Take care of I/O Device B
 fDeviceB = TRUE;
}
void interrupt vHandleDeviceZ ()
{
 !! Take care of I/O Device B
 fDeviceB = TRUE;
}

void main ()
{
 while (TRUE) {
 if (fDeviceA){
 fDeviceA = FALSE;
 !! Handle I/O Device A
 }
 if (fDeviceB){
 fDeviceB = FALSE;
 !! Handle I/O Device B
 }

(...)
 if (fDeviceZ){
 fDeviceZ = FALSE;
 !! Handle I/O Device Z
 }
 } //end of while (TRUE)
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin with interrupts example

BOOL fDeviceA = FALSE;
BOOL fDeviceB = FALSE;
(...)
BOOL fDeviceZ = FALSE;

void interrupt vHandleDeviceA ()
{
 !! Take care of I/O Device A
 fDeviceA = TRUE;
}
void interrupt vHandleDeviceB ()
{
 !! Take care of I/O Device B
 fDeviceB = TRUE;
}
void interrupt vHandleDeviceZ ()
{
 !! Take care of I/O Device B
 fDeviceB = TRUE;
}

void main ()
{
 while (TRUE) {
 if (fDeviceA){
 fDeviceA = FALSE;
 !! Handle I/O Device A
 }
 if (fDeviceB){
 fDeviceB = FALSE;
 !! Handle I/O Device B
 }

(...)
 if (fDeviceZ){
 fDeviceZ = FALSE;
 !! Handle I/O Device Z
 }
 } //end of while (TRUE)
}

• Whenever an I/O is ready,
an interrupt will occur.
• This interrupt will set a
boolean variable which
mentions that some I/O
operation needs to be done.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin with interrupts example

BOOL fDeviceA = FALSE;
BOOL fDeviceB = FALSE;
(...)
BOOL fDeviceZ = FALSE;

void interrupt vHandleDeviceA ()
{
 !! Take care of I/O Device A
 fDeviceA = TRUE;
}
void interrupt vHandleDeviceB ()
{
 !! Take care of I/O Device B
 fDeviceB = TRUE;
}
void interrupt vHandleDeviceZ ()
{
 !! Take care of I/O Device B
 fDeviceB = TRUE;
}

void main ()
{
 while (TRUE) {
 if (fDeviceA){
 fDeviceA = FALSE;
 !! Handle I/O Device A
 }
 if (fDeviceB){
 fDeviceB = FALSE;
 !! Handle I/O Device B
 }

(...)
 if (fDeviceZ){
 fDeviceZ = FALSE;
 !! Handle I/O Device Z
 }
 } //end of while (TRUE)
}

• The main loop checks the
boolean variable to see if
there is some I/O operation
that needs to be done.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Isn’t this the same as normal round-
robin? Whats the point

• The point is that I can add “important” task code into the
interrupt service routine.

• This will guarantee that “important devices” are dealt first.

• The problem is that, the lower priority devices will suffer
increased response times.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another round-robin-with-interrupts
example: cordless bar-code scanner

• The bar-code scanner is essentially a device that gets the data
from the laser that reads the bar codes and sends that data out
on the radio.

• In this system the only real response requirements are to service
the hardware quickly enough. Reading the data from the scanner
is the priority... The rest may take its time.

• The task code processing will get done quickly enough in a
round-robin loop.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Timing example

• If A,B and Z all take 200msec
each

• If A,B and Z all interrupt at the
same time when the micro-
processor is here, the task code
for Z may have to wait 400msec
until it can be executed.

• The only way to avoid this is by
putting the task code for device Z
into an interrupt routine with an
higher priority.

void main ()
{
 while (TRUE) {
 if (fDeviceA){
 fDeviceA = FALSE;
 !! Handle I/O Device A
 }
 if (fDeviceB){
 fDeviceB = FALSE;
 !! Handle I/O Device B
 }

(...)
 if (fDeviceZ){
 fDeviceZ = FALSE;
 !! Handle I/O Device Z
 }
 } //end of while (TRUE)
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round-robin-with-interrupts
architecture is not perfect

• Round-robin-with-interrupts architecture does not work well in
the following systems:

• A laser printers; since calculating the locations where the black
dots go is very time-consuming. Also, laser printers have many
other processing requirements, so it is impossible to make sure
that low-priority interrupts are serviced quickly enough.

• A tank-monitoring system; one way to calculate how much water
is in the tanks is to put all code inside interrupt service routines.
This is not a good approach and a more sophisticated
architecture is required for this system as well.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Round robin with interrupts: a system
example

• The round-robin-with-interrupts architecture is suitable for many systems,
ranging from the fairly simple to the surprisingly complex.

• One example is the communications bridge, a device with two ports that
forwards data traffic received on the first port to the second and vice versa.

• Assume the data on one of the ports is encrypted and that it is the job of
the bridge to encrypt and decrypt the data as it passes through it.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Bridge assumption #1

• Whenever a character is received
at one end, it causes an interrupt.

• That interrupt must be serviced
reasonably quickly to read the
character out of the I/O hardware
before the next character arrives.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Bridge assumption #2

• The microprocessor must write to
the I/O one character at a time.

• When a character is being written,
the communication link is busy.

• An interrupt will indicate that the
character is done transmitting (and
the link is no longer busy).

• There is no hard deadline by which
the character must be written in
hardware.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Bridge assumption #3

• We have routines that will read and
write characters to queues, and to
test if a queue is empty.

• We call these routines from the
task code as well as from the
interrupt routines.

• These routines deal with shared
data problems appropriately.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Bridge assumption #4

• The encryption routine can
encrypt just a single character at a
time.

• The decryption routine can
decrypt just a single character at a
time.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code (Part #1)

typedef struct
{
char chQueue[QUEUE_SIZE];
int iHead; //Place to add next item
int iTail; // Place to read next item
} QUEUE;

static QUEUE qDataFromLinkA;
static QUEUE qDataFromLinkB;
static QUEUE qDataToLinkA;
static QUEUE qDataToLinkB;
static BOOL fLinkAReadyToSend = TRUE;
static BOOL fLinkBReadyToSend = TRUE;

void interrupt vGotCharacterOnLinkA(){
 char ch;
 ch = !! Read character from COMM A;
 vQueueAdd (&qDataFromLinkA, ch);
}

void interrupt vGotCharacterOnLinkB (){
 char ch;
 ch = !! Read character from COMM B;
 vQueueAdd (&qDataFromLinkB, ch);
}

void interrupt vSentCharacterOnLinkA (){
 fLinkAReadyToSend = TRUE;
}

void interrupt vSentCharacterOnLinkB() {
 fLinkBReadyToSend = TRUE;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code (Part #1)

typedef struct
{
char chQueue[QUEUE_SIZE];
int iHead; //Place to add next item
int iTail; // Place to read next item
} QUEUE;

static QUEUE qDataFromLinkA;
static QUEUE qDataFromLinkB;
static QUEUE qDataToLinkA;
static QUEUE qDataToLinkB;
static BOOL fLinkAReadyToSend = TRUE;
static BOOL fLinkBReadyToSend = TRUE;

void interrupt vGotCharacterOnLinkA(){
 char ch;
 ch = !! Read character from COMM A;
 vQueueAdd (&qDataFromLinkA, ch);
}

void interrupt vGotCharacterOnLinkB (){
 char ch;
 ch = !! Read character from COMM B;
 vQueueAdd (&qDataFromLinkB, ch);
}

void interrupt vSentCharacterOnLinkA (){
 fLinkAReadyToSend = TRUE;
}

void interrupt vSentCharacterOnLinkB() {
 fLinkBReadyToSend = TRUE;
}

• The main loop checks the
boolean variable to see if
there is some I/O operation
that needs to be done.

• The interrupt routine puts
the received character on
the appropriate queue.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code (Part #2)

void main (void)
{
 char ch;
 /* Initialize the queues */
 vQueuelnitialize (&qDataFromLinkA);
 vQueuelnitialize (&qDataFromLinkB);
 vQueuelnitialize (&qDataToLinkA);
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend &&
 fQueueHasData (&qDataToLinkA))

 {
 ch = chQueueGetData (&qDataToLinkA);
 disable ();
 !!Send character to Link A
 fLinkAReadyToSend = FALSE;
 enable ();
 }
if (fLinkBReadyToSend &&
 fQueueHasData (&qDataToLinkB))
 {
 ch = chQueueGetData (&qDataToLinkB);
 disable ();
 !!Send ch to Link B
 fLinkBReadyToSend = FALSE;
 enable ();
 }
}//end of while(TRUE)
}//end of of main(void)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code (Part #2)

void main (void)
{
 char ch;
 /* Initialize the queues */
 vQueuelnitialize (&qDataFromLinkA);
 vQueuelnitialize (&qDataFromLinkB);
 vQueuelnitialize (&qDataToLinkA);
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend &&
 fQueueHasData (&qDataToLinkA))

 {
 ch = chQueueGetData (&qDataToLinkA);
 disable ();
 !!Send character to Link A
 fLinkAReadyToSend = FALSE;
 enable ();
 }
if (fLinkBReadyToSend &&
 fQueueHasData (&qDataToLinkB))
 {
 ch = chQueueGetData (&qDataToLinkB);
 disable ();
 !!Send ch to Link B
 fLinkBReadyToSend = FALSE;
 enable ();
 }
}//end of while(TRUE)
}//end of of main(void)

•Task code calls vEncrypt()
and vDecrypt() which reads
queues, encrypt/decrypt data
and updates destination
queues.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code (Part #2)

void main (void)
{
 char ch;
 /* Initialize the queues */
 vQueuelnitialize (&qDataFromLinkA);
 vQueuelnitialize (&qDataFromLinkB);
 vQueuelnitialize (&qDataToLinkA);
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend &&
 fQueueHasData (&qDataToLinkA))

 {
 ch = chQueueGetData (&qDataToLinkA);
 disable ();
 !!Send character to Link A
 fLinkAReadyToSend = FALSE;
 enable ();
 }
if (fLinkBReadyToSend &&
 fQueueHasData (&qDataToLinkB))
 {
 ch = chQueueGetData (&qDataToLinkB);
 disable ();
 !!Send ch to Link B
 fLinkBReadyToSend = FALSE;
 enable ();
 }
}//end of while(TRUE)
}//end of of main(void)

• fLinkAReadyToSend keep
track of weather the I/O is
ready to send characters
over the two communication
links.
• FALSE means that the I/O
hardware is now busy.

• When the character is
ready to be sent, an interrupt
will set fLinkAReadyToSend
to TRUE.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code (Part #2)

void main (void)
{
 char ch;
 /* Initialize the queues */
 vQueuelnitialize (&qDataFromLinkA);
 vQueuelnitialize (&qDataFromLinkB);
 vQueuelnitialize (&qDataToLinkA);
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend &&
 fQueueHasData (&qDataToLinkA))

 {
 ch = chQueueGetData (&qDataToLinkA);
 disable ();
 !!Send character to Link A
 fLinkAReadyToSend = FALSE;
 enable ();
 }
if (fLinkBReadyToSend &&
 fQueueHasData (&qDataToLinkB))
 {
 ch = chQueueGetData (&qDataToLinkB);
 disable ();
 !!Send ch to Link B
 fLinkBReadyToSend = FALSE;
 enable ();
 }
}//end of while(TRUE)
}//end of of main(void)

• Bottom line: What is
really important is that the
arriving data (on either
communication node) is stored
in a queue.

• This is done through
interrupts.

• Everything else is secondary.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code (Part #3)

void vDecrypt (void)
{
 char chClear;
 char chCryptic;

 // While there are chars from port B
 while (fQueueHasData

(&qDataFromLinkB))
 {
 //decrypt them and put them on
 //queue for port A
 chCryptic = chQueueGetData

(&qDataFromLinkB);
 chClear = !! Do decryption
 vQueueAdd (&qDataToLinkA, chClear);
 }

}

void vEncrypt (void)
{
 char chClear;
 char chCryptic;

 // While there are chars from port A
 while (fQueueHasData(&qDataFromLinkA))
 {
 //Encrypt them and put them on
 //queue for port B
 chClear = chQueueGetData

(&qDataFromLinkA);

 chCryptic = !! Do encryption
 vQueueAdd (&qDataToLinkB, chCryptic);
 }

}

