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Survey of software architectures

• We are going to discuss the four basic software approaches we 
can implement in an embedded systems.

• A software architecture is just how our source code is arranged.

• The most important factor that determines which architecture 
will be the most appropriate is how much control you need to 
have over system response. 

• A system that must respond rapidly to many different events 
ought to be implemented very differently from a system with just 
a single event and very small response time.

• Four architectures: round-robin, round-robin with interrupts, 
function-queue-scheduling, and real-time operating system.  
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Round robin
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Round robin

• Round-robin is the simplest 
imaginable architecture. 

• There are no interrupts. 

• The main loop simply checks 
each of the I/O devices in 
turn and services any that 
need service.

• No interrupts,  no shared 
data, no latency concerns 

void main () 
{
 while (TRUE) 
 {

if (!! I/O Device A needs service){
     !! Take care of I/O Device A 
  }

  if (!! I/O Device B needs service) {
   !! Take care of I/O Device B 
  }
  (...)

  if (!!  I/O Device Z needs service){
  !!  Take care of I/O Device Z 
 }
 }//end while (TRUE)
} //end void main()
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Round robin usage example

• I want to create a software program for an 
embedded system that runs a digital 
multimeter.

• A digital multimeter measures resistance or 
current or voltage in several different 
ranges. 

• A multimeter has two measuring probes, a 
digital display, and a big rotary switch that 
selects measurement and range. 
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Round robin inside a digital 
multimeter

• The system makes continuous 
measurements and changes the 
display to reflect the most recent 
measurement.

• Each time around its loop, the 
software checks the position of the 
rotary switch, branches to the 
appropriate code selection and 
writes the results to the display. 
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Digital multimeter code

void vDigitalMultiMeterMain(){
enum {OHMS1,OHMS10,...VOLTS100) eSwitchPosition;
while  (TRUE) 
{
  eSwitchPosition = !! Read switch position    

switch (eSwitchPosition) {
       case OHMS_1:
         !! Read hardware to measure ohms
         break; 
     case OHMS_10:
          !! Read hardware to measure ohms
          break;
       (...)
       case VOLTS_100:
          !! Read hardware to measure volts
          break; 
         } 
      !! Write result  to display
  }
} 
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Problems with round robin

• Round-robin architecture has only one advantage over other 
architectures: simplicity!

• It has some problems that make it inadequate for many systems:

1. If any one device needs response in a limited time, the system 
may not work. 

2. The system can respond really slowly.

3. The architecture is very susceptible to code changes.

• Because of these shortcomings, a round-robin architecture is 
probably suitable only for very simple devices .
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Issue #1: If you need fast response 
time round robin is not the way to go

• If device Z can wait no longer 
than 7 milli-seconds for service

• If device A and B each take 5 
milli-seconds to run.

• If all three devices need service, 
and the processor starts with 
device A, then the processor will 
not have time to reach device C 
quickly enough.

• ... Sure you can squeeze some 
msecs by changing device order.

void main () 
{
 while (TRUE) 
 {

if (!! I/O Device A needs service){
     !! Take care of I/O Device A 
  }

  if (!! I/O Device B needs service) {
   !! Take care of I/O Device B 
  }
  (...)

  if (!!  I/O Device Z needs service){
  !!  Take care of I/O Device Z 
 }
 }//end while (TRUE)
} //end void main()
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Issue #2: Slow system response

• If it takes 3 seconds for a 
particular function to run...

• ... then the system response 
to the rotary switch could 
be as bad as 3 seconds.

• Sure, it works but its a lousy 
product.

void vDigitalMultiMeterMain(){
enum {OHMS1,OHMS10,...VOLTS100) eSwitchPosition;
while  (TRUE) 
{
  eSwitchPosition = !! Read switch position    

switch (eSwitchPosition) {
       case OHMS_1:
         !! Read hardware to measure ohms
         break; 
     case OHMS_10:
          !! Read hardware to measure ohms
          break;
       (...)
       case VOLTS_100:
          !! Read hardware to measure volts
          break; 
         } 
      !! Write result  to display
  }
} 
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Issue #3: Round robin is a fragile 
architecture

• Even if we manage to tune up the system so that the 
microprocessor gets around the loop quickly enough to satisfy all 
requirements...

• Adding a single additional device may break everything.
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Round robin with interrupts
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Round robin with interrupts

• Interrupt routines deal with the very urgent needs of the 
hardware and then set flags

• The main loop polls the flags and does any follow-up processing 
required by the interrupts.

• This architecture gives you more control over priorities, since 
the processor can now stop the main loop and resolve the 
interrupts.
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Comparing round robin with 
interrupts and without interrupts

• Advantages: Same advantages 
of use interrupts over polling 
(priority control)

• Disadvantages: a lot of data is 
shared amongst many 
different interrupt routines 
which will potentially create 
shared data problems.
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Round robin with interrupts example

BOOL fDeviceA = FALSE; 
BOOL fDeviceB = FALSE;
(...)
BOOL fDeviceZ = FALSE;

void  interrupt vHandleDeviceA () 
{
  !! Take care of I/O Device A
  fDeviceA = TRUE; 
}
void interrupt vHandleDeviceB  () 
{
  !!  Take care of I/O Device B
  fDeviceB = TRUE; 
}
void interrupt vHandleDeviceZ  () 
{
  !!  Take care of I/O Device B
  fDeviceB = TRUE; 
}

void main  () 
{
 while  (TRUE) {
  if  (fDeviceA){
      fDeviceA = FALSE;
     !! Handle I/O Device A 
  }
 if  (fDeviceB){
      fDeviceB =  FALSE;
  !! Handle I/O Device B 
  }

(...)
 if  (fDeviceZ){
   fDeviceZ = FALSE;
   !! Handle I/O Device Z 
  }
 } //end of while (TRUE)
} 



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Round robin with interrupts example

BOOL fDeviceA = FALSE; 
BOOL fDeviceB = FALSE;
(...)
BOOL fDeviceZ = FALSE;

void  interrupt vHandleDeviceA () 
{
  !! Take care of I/O Device A
  fDeviceA = TRUE; 
}
void interrupt vHandleDeviceB  () 
{
  !!  Take care of I/O Device B
  fDeviceB = TRUE; 
}
void interrupt vHandleDeviceZ  () 
{
  !!  Take care of I/O Device B
  fDeviceB = TRUE; 
}

void main  () 
{
 while  (TRUE) {
  if  (fDeviceA){
      fDeviceA = FALSE;
     !! Handle I/O Device A 
  }
 if  (fDeviceB){
      fDeviceB =  FALSE;
  !! Handle I/O Device B 
  }

(...)
 if  (fDeviceZ){
   fDeviceZ = FALSE;
   !! Handle I/O Device Z 
  }
 } //end of while (TRUE)
} 

• Whenever an I/O is ready, 
an interrupt will occur.
• This interrupt will set a 
boolean variable which 
mentions that some I/O 
operation needs to be done.
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Round robin with interrupts example

BOOL fDeviceA = FALSE; 
BOOL fDeviceB = FALSE;
(...)
BOOL fDeviceZ = FALSE;

void  interrupt vHandleDeviceA () 
{
  !! Take care of I/O Device A
  fDeviceA = TRUE; 
}
void interrupt vHandleDeviceB  () 
{
  !!  Take care of I/O Device B
  fDeviceB = TRUE; 
}
void interrupt vHandleDeviceZ  () 
{
  !!  Take care of I/O Device B
  fDeviceB = TRUE; 
}

void main  () 
{
 while  (TRUE) {
  if  (fDeviceA){
      fDeviceA = FALSE;
     !! Handle I/O Device A 
  }
 if  (fDeviceB){
      fDeviceB =  FALSE;
  !! Handle I/O Device B 
  }

(...)
 if  (fDeviceZ){
   fDeviceZ = FALSE;
   !! Handle I/O Device Z 
  }
 } //end of while (TRUE)
} 

• The main loop checks the 
boolean variable to see if 
there is some I/O operation 
that needs to be done.
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Isn’t this the same as normal round-
robin? Whats the point

• The point is that I can add “important” task code into the 
interrupt service routine. 

• This will guarantee that “important devices” are dealt first.

• The problem is that, the lower priority devices will suffer 
increased response times.
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Another round-robin-with-interrupts 
example: cordless bar-code scanner

•  The bar-code scanner is essentially a device that gets the data 
from the laser that reads the bar codes and sends that data out 
on the radio. 

• In this system the only real response requirements are to service 
the hardware quickly enough. Reading the data from the scanner 
is the priority... The rest may take its time.

• The task code processing will get done quickly enough in a 
round-robin loop.
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Timing example

• If A,B and Z all take 200msec 
each

• If A,B and Z all interrupt at the 
same time when the micro-
processor is here, the task code 
for Z may have to wait 400msec 
until it can be executed.

• The only way to avoid this is by 
putting the task code for device Z 
into an interrupt routine with an 
higher priority. 

void main  () 
{
 while  (TRUE) {
  if  (fDeviceA){
      fDeviceA = FALSE;
     !! Handle I/O Device A 
  }
 if  (fDeviceB){
      fDeviceB =  FALSE;
  !! Handle I/O Device B 
  }

(...)
 if  (fDeviceZ){
   fDeviceZ = FALSE;
   !! Handle I/O Device Z 
  }
 } //end of while (TRUE)
} 
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Round-robin-with-interrupts 
architecture is not perfect

• Round-robin-with-interrupts architecture does not work well in 
the following systems: 

• A laser printers; since calculating the locations where the black 
dots go is very time-consuming.  Also, laser printers have many 
other processing requirements, so it is impossible to make sure 
that low-priority interrupts are serviced quickly enough. 

• A tank-monitoring system; one way to calculate how much water 
is in the tanks is to put all code inside interrupt service routines. 
This is not a good approach and a more sophisticated 
architecture is required for this system as well. 
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Round robin with interrupts: a system 
example 

• The round-robin-with-interrupts architecture is suitable for many systems, 
ranging from the fairly simple to the surprisingly complex. 

• One example is the communications bridge, a device with two ports that 
forwards data traffic received on the first port to the second and vice versa. 

• Assume the data on one of the ports is encrypted and that it is the job of 
the bridge to encrypt and decrypt the data as it passes through it. 
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Bridge assumption #1

• Whenever a character is received 
at one end, it causes an interrupt.

• That interrupt must be serviced 
reasonably quickly to read the 
character out of the I/O hardware 
before the next character arrives. 



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Bridge assumption #2

• The microprocessor must write to 
the I/O one character at a time.

• When a character is being written, 
the communication link is busy.

• An interrupt will indicate that the 
character is done transmitting (and 
the link is no longer busy).

• There is no hard deadline by which 
the character must be written in 
hardware.
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Bridge assumption #3

• We have routines that will read and 
write characters to queues, and to 
test if a queue is empty.

• We call these routines from the 
task code as well as from the 
interrupt routines.

• These routines deal with shared 
data problems appropriately.
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Bridge assumption #4

• The encryption routine can 
encrypt just a single character at a 
time.

• The decryption routine can 
decrypt just a single character at a 
time.
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Code (Part #1)

typedef struct
{
char chQueue[QUEUE_SIZE];
int iHead; //Place to add next item
int iTail; // Place to read next item
} QUEUE;

static QUEUE qDataFromLinkA; 
static QUEUE qDataFromLinkB; 
static QUEUE qDataToLinkA; 
static QUEUE qDataToLinkB;
static BOOL fLinkAReadyToSend = TRUE; 
static BOOL fLinkBReadyToSend = TRUE;

void interrupt vGotCharacterOnLinkA(){
 char ch;
 ch = !! Read character from COMM A;
 vQueueAdd (&qDataFromLinkA, ch); 
}

void interrupt vGotCharacterOnLinkB (){
 char ch;
 ch = !! Read character from COMM B;
 vQueueAdd (&qDataFromLinkB, ch); 
}

void interrupt vSentCharacterOnLinkA (){
 fLinkAReadyToSend = TRUE; 
}

void interrupt vSentCharacterOnLinkB() {
 fLinkBReadyToSend = TRUE; 
}
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Code (Part #1)

typedef struct
{
char chQueue[QUEUE_SIZE];
int iHead; //Place to add next item
int iTail; // Place to read next item
} QUEUE;

static QUEUE qDataFromLinkA; 
static QUEUE qDataFromLinkB; 
static QUEUE qDataToLinkA; 
static QUEUE qDataToLinkB;
static BOOL fLinkAReadyToSend = TRUE; 
static BOOL fLinkBReadyToSend = TRUE;

void interrupt vGotCharacterOnLinkA(){
 char ch;
 ch = !! Read character from COMM A;
 vQueueAdd (&qDataFromLinkA, ch); 
}

void interrupt vGotCharacterOnLinkB (){
 char ch;
 ch = !! Read character from COMM B;
 vQueueAdd (&qDataFromLinkB, ch); 
}

void interrupt vSentCharacterOnLinkA (){
 fLinkAReadyToSend = TRUE; 
}

void interrupt vSentCharacterOnLinkB() {
 fLinkBReadyToSend = TRUE; 
}

• The main loop checks the 
boolean variable to see if 
there is some I/O operation 
that needs to be done.

• The interrupt routine puts 
the received character on 
the appropriate queue.
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Code (Part #2)

void main (void) 
{
 char ch;
 /* Initialize the queues */ 
 vQueuelnitialize (&qDataFromLinkA); 
 vQueuelnitialize (&qDataFromLinkB); 
 vQueuelnitialize (&qDataToLinkA); 
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */ 
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend && 
  fQueueHasData (&qDataToLinkA))

  {
  ch = chQueueGetData (&qDataToLinkA);
  disable ();
  !!Send character to Link A
  fLinkAReadyToSend = FALSE;
  enable (); 
  }
if (fLinkBReadyToSend && 
    fQueueHasData (&qDataToLinkB)) 
  {
  ch = chQueueGetData (&qDataToLinkB);
  disable ();
  !!Send ch   to  Link B
  fLinkBReadyToSend = FALSE;
  enable (); 
  } 
}//end of while(TRUE)
}//end of of main(void)
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Code (Part #2)

void main (void) 
{
 char ch;
 /* Initialize the queues */ 
 vQueuelnitialize (&qDataFromLinkA); 
 vQueuelnitialize (&qDataFromLinkB); 
 vQueuelnitialize (&qDataToLinkA); 
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */ 
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend && 
  fQueueHasData (&qDataToLinkA))

  {
  ch = chQueueGetData (&qDataToLinkA);
  disable ();
  !!Send character to Link A
  fLinkAReadyToSend = FALSE;
  enable (); 
  }
if (fLinkBReadyToSend && 
    fQueueHasData (&qDataToLinkB)) 
  {
  ch = chQueueGetData (&qDataToLinkB);
  disable ();
  !!Send ch   to  Link B
  fLinkBReadyToSend = FALSE;
  enable (); 
  } 
}//end of while(TRUE)
}//end of of main(void)

•Task code calls vEncrypt() 
and vDecrypt() which reads 
queues, encrypt/decrypt data 
and updates destination 
queues.
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Code (Part #2)

void main (void) 
{
 char ch;
 /* Initialize the queues */ 
 vQueuelnitialize (&qDataFromLinkA); 
 vQueuelnitialize (&qDataFromLinkB); 
 vQueuelnitialize (&qDataToLinkA); 
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */ 
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend && 
  fQueueHasData (&qDataToLinkA))

  {
  ch = chQueueGetData (&qDataToLinkA);
  disable ();
  !!Send character to Link A
  fLinkAReadyToSend = FALSE;
  enable (); 
  }
if (fLinkBReadyToSend && 
    fQueueHasData (&qDataToLinkB)) 
  {
  ch = chQueueGetData (&qDataToLinkB);
  disable ();
  !!Send ch   to  Link B
  fLinkBReadyToSend = FALSE;
  enable (); 
  } 
}//end of while(TRUE)
}//end of of main(void)

• fLinkAReadyToSend keep 
track of weather the I/O is 
ready to send characters 
over the two communication 
links.
• FALSE means that the I/O 
hardware is now busy.

• When the character is 
ready to be sent, an interrupt 
will set fLinkAReadyToSend 
to TRUE.
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Code (Part #2)

void main (void) 
{
 char ch;
 /* Initialize the queues */ 
 vQueuelnitialize (&qDataFromLinkA); 
 vQueuelnitialize (&qDataFromLinkB); 
 vQueuelnitialize (&qDataToLinkA); 
 vQueuelnitialize (&qDataToLinkB);
 /* Enable the interrupts. */ 
 enable ();
 while (TRUE) {
 vEncrypt ();
 vDecrypt ();

if (fLinkAReadyToSend && 
  fQueueHasData (&qDataToLinkA))

  {
  ch = chQueueGetData (&qDataToLinkA);
  disable ();
  !!Send character to Link A
  fLinkAReadyToSend = FALSE;
  enable (); 
  }
if (fLinkBReadyToSend && 
    fQueueHasData (&qDataToLinkB)) 
  {
  ch = chQueueGetData (&qDataToLinkB);
  disable ();
  !!Send ch   to  Link B
  fLinkBReadyToSend = FALSE;
  enable (); 
  } 
}//end of while(TRUE)
}//end of of main(void)

• Bottom line: What is 
really important is that the 
arriving data (on either 
communication node) is stored 
in a queue.

• This is done through 
interrupts.

• Everything else is secondary.
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Code (Part #3)

void vDecrypt (void) 
{
 char chClear;
 char chCryptic;

  // While there are chars from port B 
  while (fQueueHasData 

(&qDataFromLinkB))
  {
   //decrypt them and put them on 
   //queue for port A
   chCryptic = chQueueGetData    

(&qDataFromLinkB);
   chClear =  !!  Do decryption
   vQueueAdd  (&qDataToLinkA,  chClear); 
  }

} 

void  vEncrypt   (void) 
{
 char  chClear;
 char  chCryptic;
 
 // While there are chars from port A
 while  (fQueueHasData(&qDataFromLinkA))
 {
  //Encrypt them and put them on
  //queue for port B 
  chClear = chQueueGetData 

(&qDataFromLinkA);
  
  chCryptic = !! Do encryption
  vQueueAdd (&qDataToLinkB, chCryptic); 
  }

}


