
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Survey of software architectures:
function-queue-scheduling

architecture and real time OS
Reference: Simon chapter 5

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Last class: round robin with interrupts
and without interrupts

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function-Queue-Scheduling
Architecture

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Function-Queue-Scheduling
Architecture

• In this architecture, the interrupt routines add function pointers
to a queue of function pointers for the main function to call.

• What makes this architecture worthwhile is that no rule says the
main task code has to call the functions in the order that the
interrupt occurred.

• It can call them based on any priority scheme of your choosing.

• Any task code functions that need quicker response can be
executed earlier.

• All you need is some coding in the routines that queue up the
function pointers.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

!! Queue of function pointers;
void interrupt vHandleDeviceA (void)
{
 !! Take care of I/O Device A
 !! Put function_A on queue of function pointers
}
void interrupt vHandleDeviceB (void)
{
 !! Take care of I/O Device B
 !! Put function_B on queue of function pointers
}

void function_A (void) {
 !! Handle actions required by device A
}

void function_B (void) {
 !! Handle actions required by device B
}

void main(void)
{

while (TRUE)
 {

 while (!!Queue of function pointers is empty)
 !! Call first function on queue

} //end of while (TRUE)
} //end of void main()

Function Queue
Schedule

• Every time there is an
interrupt quickly collect all
appropriate data

• ... And state that the
appropriate data-handling
function needs to be
executed soon.

• This is done put putting a
function pointer into a
queue.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

!! Queue of function pointers;
void interrupt vHandleDeviceA (void)
{
 !! Take care of I/O Device A
 !! Put function_A on queue of function pointers
}
void interrupt vHandleDeviceB (void)
{
 !! Take care of I/O Device B
 !! Put function_B on queue of function pointers
}

void function_A (void) {
 !! Handle actions required by device A
}

void function_B (void) {
 !! Handle actions required by device B
}

void main(void)
{

while (TRUE)
 {

 while (!!Queue of function pointers is empty)
 !! Call first function on queue

} //end of while (TRUE)
} //end of void main()

Function Queue
Schedule

• The main routine just
reads pointers from the
queue and calls the
functions.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

!! Queue of function pointers;
void interrupt vHandleDeviceA (void)
{
 !! Take care of I/O Device A
 !! Put function_A on queue of function pointers
}
void interrupt vHandleDeviceB (void)
{
 !! Take care of I/O Device B
 !! Put function_B on queue of function pointers
}

void function_A (void) {
 !! Handle actions required by device A
}

void function_B (void) {
 !! Handle actions required by device B
}

void main(void)
{

while (TRUE)
 {

 while (!!Queue of function pointers is empty)
 !! Call first function on queue

} //end of while (TRUE)
} //end of void main()

Function Queue
Schedule

•If interrupt for device B
was triggered first, then
this function ought to be
executed first.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

!! Queue of function pointers;
void interrupt vHandleDeviceA (void)
{
 !! Take care of I/O Device A
 !! Put function_A on queue of function pointers
}
void interrupt vHandleDeviceB (void)
{
 !! Take care of I/O Device B
 !! Put function_B on queue of function pointers
}

void function_A (void) {
 !! Handle actions required by device A
}

void function_B (void) {
 !! Handle actions required by device B
}

void main(void)
{

while (TRUE)
 {

 while (!!Queue of function pointers is empty)
 !! Call first function on queue

} //end of while (TRUE)
} //end of void main()

Example

• While the code is here,
Device A interrupts, then
Device B interrupts.

•FunctionA and FunctionB
are placed in the queue

• While code executes
functionA, another
interrupt occurs, for
DeviceA.

• The code will finish
functionA, then will do
functionB and finally
function A.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

!! Queue of function pointers;
void interrupt vHandleDeviceA (void)
{
 !! Take care of I/O Device A
 !! Put function_A on queue of function pointers
}
void interrupt vHandleDeviceB (void)
{
 !! Take care of I/O Device B
 !! Put function_B on queue of function pointers
}

void function_A (void) {
 !! Handle actions required by device A
}

void function_B (void) {
 !! Handle actions required by device B
}

void main(void)
{

while (TRUE)
 {

 while (!!Queue of function pointers is empty)
 !! Call first function on queue

} //end of while (TRUE)
} //end of void main()

Priorities

• You can call functions
based on any priority
scheme that suits your
purposes.

• Any task code functions
that need quicker response
can be executed earlier.

• This looks like a good
homework problem :)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

!! Queue of function pointers;
void interrupt vHandleDeviceA (void)
{
 !! Take care of I/O Device A
 !! Put function_A on queue of function pointers
}
void interrupt vHandleDeviceB (void)
{
 !! Take care of I/O Device B
 !! Put function_B on queue of function pointers
}

void function_A (void) {
 !! Handle actions required by device A
}

void function_B (void) {
 !! Handle actions required by device B
}

void main(void)
{

while (TRUE)
 {

 while (!!Queue of function pointers is empty)
 !! Call first function on queue

} //end of while (TRUE)
} //end of void main()

Big advantage!

• Since the interrupt
routines take very little
time...

• You can have a lot of
interrupts happening all at
once and you will execute
the same function
sequentially multiple times!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Issues with function-queue-scheduling
architectures

• In this architecture the worst wait for the highest-priority task
code function is the length of the longest of the task code
functions.

• This worst case happens if the longest task code function has
just started when the interrupt for the highest-priority device
occurs.

• The response for lower-priority task code functions may get
worse.

• If one of the lower-priority task code functions is quite long, it
will affect the response for the higher-priority functions.

‣ This is because, the function that is being currently
processed needs to finish first and only after this is
done, the highest priority function in the queue can be
executed.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Issues with function-queue-scheduling
architectures

• In this architecture the worst wait for the highest-priority task
code function is the length of the longest of the task code
functions.

• This worst case happens if the longest task code function has
just started when the interrupt for the highest-priority device
occurs.

• The response for lower-priority task code functions may get
worse.

• If one of the lower-priority task code functions is quite long, it
will affect the response for the higher-priority functions.

‣ That’s right... Since interrupts now only add functions
to the queue (and don’t execute them immediately),
you need to wait until the current function that is
being executed to end.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Issues with function-queue-scheduling
architectures

• In this architecture the worst wait for the highest-priority task
code function is the length of the longest of the task code
functions.

• This worst case happens if the longest task code function has
just started when the interrupt for the highest-priority device
occurs.

• The response for lower-priority task code functions may get
worse.

• If one of the lower-priority task code functions is quite long, it
will affect the response for the higher-priority functions.

‣Yes. If an higher priority interrupt keeps happening,
then that particular function will always be the first in
the queue to be processed.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Issues with function-queue-scheduling
architectures

• In this architecture the worst wait for the highest-priority task
code function is the length of the longest of the task code
functions.

• This worst case happens if the longest task code function has
just started when the interrupt for the highest-priority device
occurs.

• The response for lower-priority task code functions may get
worse.

• If one of the lower-priority task code functions is quite long, it
will affect the response for the higher-priority functions.

‣Yes. If an lower priority function is (eventually)
executed, and if its really slow... then the higher
priority functions will have to wait until the slower
function is done.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Queues vs round robin

•Of course there are some trade-offs.

•In queues higher priority functions have better response,
however lower priority functions will suffer.

•In round robin architectures, all functions will eventually be
processed.

•With queues, there is an off change that all low priority
functions will never be processed, if high priority interrupts
keep happening.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Real-time operating system
architecture

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Real time architectures

• Today is just a brief introduction
to real time architectures.

• We will be spending most of the
next couple of weeks discussing
this type of architecture in detail.

• Interrupt routines take care of
the urgent operations.

• They then “signal” that there is
work to be done in the task
code.

void interrupt vHandleDeviceA (void){
 !! Take care of I/O Device A
 !! Set signal X
}
void interrupt vHandleDeviceB (void){
 !! Take care of I/O Device B
 !! Set signal Y
}

void Task1 (void){
 while (TRUE){
 !! Wait for Signal X
 !! Handle data to/from I/O Device A
 }
}
void Task2 (void){
 while (TRUE){
 !! Wait for Signal Y
 !! Handle data to/from I/O Device B
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Basics of RTOS architectures

• The necessary signaling between
the interrupt routines and the
task code is handled by the real
time operating system (RTOS).

• The RTOS code is not outlined in
the code.

• We do NOT need shared
variables for this.

• No loop in the code decides
what to do next. The RTOS also
decides what tasks run next.

void interrupt vHandleDeviceA (void){
 !! Take care of I/O Device A
 !! Set signal X
}
void interrupt vHandleDeviceB (void){
 !! Take care of I/O Device B
 !! Set signal Y
}

void Task1 (void){
 while (TRUE){
 !! Wait for Signal X
 !! Handle data to/from I/O Device A
 }
}
void Task2 (void){
 while (TRUE){
 !! Wait for Signal Y
 !! Handle data to/from I/O Device B
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Basics of RTOS architectures

• The RTOS can suspend one task
subroutine in the middle of
processing in order to run
another.

• If Task1 is the highest priority
task, then when the
vHandleDeviceA interrupt
occurs, this task will be done
immediately.

• The worst-case wait scenario for
Task1 is then zero (plus the
interrupt handling times).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Side effect #1 of RTOS architectures:
stable response

• The system response is very
stable, even when we change the
code.

• In round robin architectures and
queues, the response time
depends on the various task
code subroutines (even the
lowest priority ones).

• In RTOS architectures, changing
the low priority functions, does
not affect high-priority functions.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Side effect #2 of RTOS architectures:
widely available for purchase

• RTOS are so important and
useful that there are several
companies that specialize in
selling the operating system for
each architecture.

• ChibiOS/RT, FreeRTOS, MicroC/
OS, Salvo

• Some are even compatible with
the Atmel ATmega chips!

• For example, visit the FreeRTOS
website.

http://interactive.freertos.org/entries/20628603-freertos-for-arduino-328p-pololu-orangutan-1284p-eclipse-gcc-avrdude
http://interactive.freertos.org/entries/20628603-freertos-for-arduino-328p-pololu-orangutan-1284p-eclipse-gcc-avrdude
http://interactive.freertos.org/entries/20628603-freertos-for-arduino-328p-pololu-orangutan-1284p-eclipse-gcc-avrdude
http://interactive.freertos.org/entries/20628603-freertos-for-arduino-328p-pololu-orangutan-1284p-eclipse-gcc-avrdude

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Disadvantages of RTOS architectures

• The RTOS itself uses a certain
amount of processing time.

• The RTOS requires storage
space... and in embedded systems
space is very sparse.

void interrupt vHandleDeviceA (void){
 !! Take care of I/O Device A
 !! Set signal X
}
void interrupt vHandleDeviceB (void){
 !! Take care of I/O Device B
 !! Set signal Y
}

void Task1 (void){
 while (TRUE){
 !! Wait for Signal X
 !! Handle data to/from I/O Device A
 }
}
void Task2 (void){
 while (TRUE){
 !! Wait for Signal Y
 !! Handle data to/from I/O Device B
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Summary of software
architectures

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Which architecture should you use?

• Select the simplest architecture that will meet your response
requirements.

• If your system has response requirements that might necessitate
using a real-time operating system, then use a real-time operating
system.

• If it makes sense, you can even create hybrids architectures (e.g.
round-robin with scheduling working side by side a RTOS).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Priorities
available

Worst time
response for task

code

Stability of
response when
code changes

Simplicity

Round-robin None. Sum of all task code. Poor. Very simple.

Round-robin
with interrupts

Interrupt routines in
priority order, then all

task code with the
same priority.

Total of execution
time for all task code
(plus execution time

for interrupt
routines).

Good for interrupt
routines. Poor for

task code.

Must deal with shared
data problems

between interrupt
routines and task

code.

Function queue-
scheduling

Interrupt routines in
priority order, then all
task code in priority

order.

Execution time for
the longest function
(plus execution time

for interrupt
routines).

Relatively good.
Must deal with shared
data and must write
function queue code.

Real time
operating system

Interrupt routines in
priority order, then all
task code in priority

order.

Zero (plus execution
time for interrupt

routines).
Very good.

Most complex
(although much of the
complexity is in the
operating system

itself).

