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Real-time operating systems (RTOS) 

• Most real-time operating systems are different from desktop 
machine operating systems.

• On a desktop computer the operating system takes control of 
the machine as soon as it is turned on and then lets you start 
your applications. 

• You compile and link your applications separately from the 
operating system. 

• In an embedded system, you usually link your application and the 
RTOS.  At boot-up time, your application usually gets control 
first, and it then starts the RTOS.
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Embedded RTOS

• The application and the RTOS are tightly tied in an embedded 
system.

• Many RTOSs do not protect themselves as carefully from your 
application as do desktop operating systems. 

• For example: 

• Desktop computers usually check that any pointer you pass 
into a function is valid.

• Embedded RTOS usually skip this for better performance.

• Why? A bad pointer will crash the desktop application, but not 
the entire OS.  In a embedded system, a bad pointer will crash 
the entire embedded system and its single application.
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Customizing your RTOS

• To save memory RTOSs typically include just the services that 
you need for your embedded system and no more. 

• Most RTOS allow you to configure them extensively so you don’t 
link unnecessary parts to your code.

• Unless you need them, you can configure away things such as I/O 
drivers or even memory management.

• You don’t usually write your own RTOS but buy it from a vendor 
such as  VxWorks, VRTX, pSOS, Nucleus, C Executive, LynxOS, 
QNX, Multi-Task!, AMX, and dozens more. 
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The different RTOSs

• Unless your requirements for speed or code size or robustness 
are extreme, the commercial RTOSs represent a good value, in 
that they come already debugged and with a good collection of 
features and tools.

• In many ways the systems are very similar to one another: they 
offer most or all of the services discussed we will be discussing 
over the next couple of lectures.
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Tasks and task states
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Definition of a task

• Task: it’s the basic building block of software written under an 
RTOS. 

• Tasks are very simple: in most RTOS a task is just a sub-routine. 

• At some point in your program, you call a function in the RTOS 
that starts a task; you tell which subroutine is the starting point 
for each task and some other parameters. 

• There are no limit in the number of tasks in most RTOS.
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Each task in an RTOS is always in one 
of three states

• Running: which means that the microprocessor is executing 
the instructions that make up this task.

• Ready: which means that some other task is in the running 
state but that this task has things that it could do if the 
microprocessor becomes available.  Any number of tasks can be 
in this state.

• Blocked: which means that this task hasn't got anything to do 
right now, even if the microprocessor becomes available. Tasks 
get into this state because they are waiting for some external 
event. Any number of tasks can be in this state as well.
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Handful of other states

• Most RTOSs may offer many other  other task states. Such as  
suspended, pended, waiting, dormant, and delayed. 

• We are just going to focus on the running, ready and 
blocked states.
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The scheduler
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What is a scheduler

•The scheduler: A part of the RTOS which keeps track of the 
state of each task and decides which one task should go into 
the running state. 

•Very simple behavior: schedulers look at priorities you 
assign to the tasks, and among the tasks that are not in the 
blocked state, the one with the highest priority runs, and 
the rest of them wait in the ready state. 

•The lower-priority tasks just have to wait; the scheduler 
assumes that you knew what you were doing when you set the 
task priorities.
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Task states

•Block means "move into 
the blocked state," 

•Run means "move into the 
running state“ or "be in the 
running state," 

•Switch means "change 
which task is in the running 
state." 

A piece of code (task) can be 
in any of the following states...

In single core systems: only 
one task can be running!
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Consequence #1: Only a task can 
block itself

• A task will only switch to 
the block state when it 
decides for itself that it 
has run out of things to do 
(or that is waiting for 
something else). 

• Other tasks cannot 
decide that a should go to 
the block state.

• A task has to be running 
before going to the block 
state.

A piece of code (task) can be 
in any of the following states...

In single core systems: only 
one task can be running!
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Consequence #2: Only other tasks or 
interrupts can switch a task to ready!

• While a task is in the 
blocked state, it never 
gets the microprocessor. 

•So, an interrupt routine 
or some other task in 
the system must be able 
to signal that whatever 
the task was waiting for 
has happened. 

•Otherwise, the task will 
be blocked forever.

A piece of code (task) can be 
in any of the following states...

In single core systems: only 
one task can be running!
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Consequence #3: The scheduler 
controls which tasks to run next

• The shuffling of tasks 
between the ready and 
running states is entirely the 
work of the scheduler. 

• Tasks can block 
themselves, and tasks and 
interrupt routines can move 
other tasks from the 
blocked state to the ready 
state, but the scheduler has 
control over the running 
state. 

A piece of code (task) can be 
in any of the following states...

In single core systems: only 
one task can be running!
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Some common questions 
about the scheduler and task 

states
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How does the scheduler knows the 
different task states?

•Q: How does the scheduler know when a task has become 
blocked or unblocked? 

•A: The RTOS provides a collection of functions that tasks can 
call to tell the scheduler what events they want to wait for and 
to signal that events have happened. 
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What happens if all the tasks are 
blocked?

• If all the tasks are blocked, then the scheduler will spin 
in some tight loop somewhere inside of the RTOS, waiting 
for something to happen. 

• If nothing ever happens, then that's your fault!!!

•  You must make sure that something happens sooner or later 
by having an interrupt routine that calls some RTOS function 
that unblocks a task. Otherwise, your software will not be 
doing very much.



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

What if two tasks with the same 
priority are ready? 

•Q: What if two tasks with the same priority are ready? 

•A: Depends on which RTOS you use.

1. Some RTOS make it illegal to have two tasks with the same 
priority. 

2. Other RTOS will time-slice between two such tasks. 

3. A ROTS can also run one random task until it blocks and 
then run the other. 
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Selecting which tasks to run

•Q: If one task is running and another, higher-priority task 
unblocks, does the task that is running get stopped and moved 
to the ready state right away? 

•A: Depends on the RTOS. A preemptive RTOS will stop a 
lower-priority task as soon as the higher-priority task 
unblocks. A nonpreemptive RTOS will only take the 
microprocessor away from the lower-priority task when that 
task blocks.  
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Example
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Tank monitoring system

• Imagine I have 300 watering tanks 
in my greenhouse

• I have one microprocessor that 
constantly monitors the water level 
at every single tank.

• It takes a while to determine the 
water level for each tank.

• Whenever I press a button I want 
to immediately know the water 
level for a particular tank.



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Pseudo-code for a tank monitoring 
system 

•vLevelsTask task uses up a lot of 
computing time figuring out 
how much water is in the tanks 

•Low-priority: vLevelsTask task 

•High-priority: vButtonTask task 

•One convenient feature of the 
RTOS is that the two tasks can 
be written independently of one 
another, and the system will still 
respond well. 

/* "Button Task" */
void vButtonTask (void)  /* High priority */
{
  while (TRUE) 
    {
      !! Block until  user pushes a button 
      !! Quick:  respond to the user 
    } 
}

/* "Levels Task" */
void vLevelsTask (void)  /* Low priority */
{
while (TRUE) {
     !!  Read  levels of floats  in tank
     !!  Calculate average float  level 
     !!  Do some interminable calculation
     !!  Do more  interminable calculation
     !!  Do yet more  interminable calculation
     !!  Figure out which tank to do next
  }
}
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Microprocessor responds to a button 
under an RTOS

Blocked: task is 
waiting for other 
things to do.

Ready: task is 
ready to do useful 
stuff.

Running: tasks is 
currently executing.
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Microprocessor responds to a button 
under an RTOS

Blocked: task is 
waiting for other 
things to do.

Ready: task is 
ready to do useful 
stuff.

Running: tasks is 
currently executing.

vButtonTask is blocked 
because the button 
hasn’t been pressed!
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Microprocessor responds to a button 
under an RTOS

Blocked: task is 
waiting for other 
things to do.

Ready: task is 
ready to do useful 
stuff.

Running: tasks is 
currently executing.

Button is pressed, so 
vLevelsTask is now back 

to the ready state... 
because it can resume 

operation anytime.
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The three different states
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 RTOS initialization code

/* "Button Task" */
void vButtonTask (void)  /* High priority */
{
  while (TRUE) 
    {
      !! Block until  user pushes a button 
      !! Quick:  respond to the user 
    } 
}

/* "Levels Task" */
void vLevelsTask (void)  /* Low priority */
{
while (TRUE) {
     !!Read  levels of floats  in tank
     !!Calculate average float  level 
     !!Do some interminable calculation
     !!Do more  interminable calculation
     !!Do yet more  interminable calculation
     !!Figure out which tank to do next
  }
}

void main  (void) 
{
 //Initialize (but do not start) the RTOS
 InitRTOS ();

 // Tell  the RTOS about our tasks 
 StartTask  (vRespondToButton,  HIGH_ PRIOTY); 
 StartTask  (vCalculateTankLevels, L0W_PRIOTY);

 //Start the RTOS.   
 //(This function never returns.)
 StartRTOS  (); 
}
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Tasks and data
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Tasks and data

•Each task has its own private context, which includes 
the register values, a program counter, and a stack. 

•All other data is shared among all of the tasks in the system 
(e.g global, static, initialized, uninitialized, and other data).

•The RTOS typically has its own private data structures, which 
are not available to any of the tasks. 
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Example

• Task 1, Task 2, and Task 3 
can access any of the data 
in the system.

• Each task has its own 
private context, which 
includes the register 
values, a program counter, 
and a stack. 

•The RTOS has some 
private data structures, 
which are not available to 
any of the tasks. 
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Sharing data variables between tasks

• Since you can share data variables among tasks, it is easy to 
move data from one task to another: the two tasks need only 
have access to the same variables. 

•You can easily accomplish this by having the two tasks in the 
same module in which the variables are declared, or you can 
make the variables public in one of the tasks and declare them 
extern in the other. 
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struct {
long ITankLevel;
long lTimellpdated; 
}  tankdata[MAX_TANKS];

//"Button Task"
//High priority
void vRespondToButton (void) 
{
  int i;
  while (TRUE)
  {
    !!Block until  user pushes a button
    i = !!ID of button pressed;
    printf ("\nTIME: %081d  LEVEL: %081d", 
    tankdata[i].ITimeUpdated, 
    tankdata[i].ITankLevel); 
  } 
}

//"Levels Task"
//Low priority
void vCalculateTankLevels (void)
{
  int i =0; 
  while (TRUE)
  {
   !!Read  levels of floats in tank i 
   !!Do more  interminable calculation
   !!Do yet more  interminable calculation

   //Store the result
   tankdata[i].ITimeUpdated = !!Current time 

   //Between these two instructions is a 
   //bad place for a task switch 
   tankdata[i].ITankLevel = !!Calc. Result

   !!Figure out which tank to do next
   i = !!something new 
  } 
}

• vRespondToButton task prints out some data that is maintained by the 
vCalculateTankLevels task. 
• Both tasks can access the tankData array of structures just as they 
could if this system were written without an RTOS.
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Shared-data problems

• Bugs may show up because an interrupt routine shares data 
with task code in the system. 

• Two tasks are sharing data, and unfortunately all of the same 
kinds of bugs we previously discussed will show up again. 

• The RTOS might stop vCalculateTankLevels at any time and 
run vRespondToButton. 

• However, the RTOS might stop vCalculateTankLevels right in 
the middle of setting data in the tankdata array (which is not an 
atomic operation), and vRespondToButton might then read 
that half-changed data.
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Another example
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Tasks can share code

• In this example, both Task1 and 
Task2 call function vCountErrors. 

• This is a perfectly valid thing to 
do in an RTOS

• Any or all of the tasks can share 
as many functions as it is 
convenient. 

static  int cErrors;

void Task1  (void) 
{
  (...)

vCountErrors(9);
  (...)
}

void Task2  (void) 
{
 (...)
 vCountErrors(11);
 (...)
}

void vCountErrors  (int cNewErrors) 
{
  cErrors += cNewErrors; 
}
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Potential bug on this example

• Task1 and Task2 call 
vCountErrors, and since 
vCountErrors uses the variable 
cErrors, the variable cErrors is 
now shared by the two tasks.

• If Task1 calls vCountErrors, and 
if the RTOS then stops Task1 
and runs Task2, which then calls 
vCountErrors, the variable 
cErrors may get corrupted in 
just the same way as it would if 
Task2 were an interrupt routine 
that had interrupted Task1.

static  int cErrors;

void Task1  (void) 
{
  (...)

vCountErrors(9);
  (...)
}

void Task2  (void) 
{
 (...)
 vCountErrors(11);
 (...)
}

void vCountErrors  (int cNewErrors) 
{
  cErrors += cNewErrors; 
}
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How can cErrors become corrupted? 
(Part 1)

• cErrors = cErrors + cNewErrors; 

• Move cErrors into register R1

• Add cNewErrors to register R1 
and store the result in R1

• Move the contents of R1 into the 
memory location where cErrors 
is.
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How can cErrors become corrupted? 
(Part 2)

• Suppose that the value 5 is initially 
stored in cErrors. 

• Suppose that Task1 calls 
vCountErrors(9), and suppose 
that vCountErrors does the 
MOVE and ADD instructions, 
leaving the result in register 
R1(14).
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How can cErrors become corrupted? 
(Part 3)

• Remember: each task has their 
own stack which have unique 
register values.

• Suppose now that the RTOS stops 
Task1 and runs Task2 and that 
Task2 calls vCountErrors(11). 

• The code in vCountErrors fetches 
the old value of cErrors(5), adds 
11 to it, and stores the result(16). 
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How can cErrors become corrupted? 
(Part 4)

• Eventually, the RTOS switches 
back to Task1, which then 
executes the next instruction in 
vCountErrors, saving whatever is 
in register R1(14) to cErrors and 
overwriting the value written by 
Task2(16). 

• Instead of cErrors ending up as 25 
(the original 5, plus 11 plus 9), it 
ends up as 14, which is incorrect!
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Automatic, static and volatile, 
variables in C
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Example of an automatic variable

• The variable_z is initialized 
inside the function hello_function.

• Its scope is only within the 
hello_function.

• The contents of the variable_z 
will be erased after we leave the 
hello_function.

• Variable_z is located in the 
stack.

#include <stdio.h>
 
void hello_function(int b) 
{
 int variable_z = 0; 
 
 //same as variable_z = variable_z + b
 variable_z += b; 

 //outputs the value of variable_z
 printf("%d\n", variable_z); 
}
 
int main(int argc, char * const argv[]) {
        hello_function(10); // prints 10
        hello_function(12); // prints 12
        return 0;
}
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Static variables

• A static variable is a variable that has been allocated statically.

• Its lifetime extends across the entire run of the program. 

• This is in contrast to the more ephemeral automatic variables 
(local variables), whose storage is allocated and deallocated on 
the call stack; and in contrast to objects whose storage is 
dynamically allocated.

• Static variables are stored in a fixed memory location (NOT on 
the stack).
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Example of a static variable

• Even though its inside a 
function, the variable x is only 
initialized once.

• The contents of the variable 
will be incremented every 
time func() is entered 

#include <stdio.h>
 
void func() 
{
 //x is initialized only once across three 
 //calls of func()
 static int x = 0; 
 
 //outputs the value of x
 printf("%d\n", x); 
 x = x + 1;
}
 
int main(int argc, char * const argv[]) {
        func(); // prints 0
        func(); // prints 1
        func(); // prints 2
        return 0;
}
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Static is a storage class

• In C, static is a reserved word controlling both lifetime (as 
discussed on previous slides) and linkage (visibility). 

• To be precise, static is a storage class (not to be confused 
with classes in object-oriented programming), as are extern, auto 
and register (which are also reserved words). 

• Every variable and function has one of these storage classes; if a 
declaration does not specify the storage class, a context-
dependent default is used.



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Effects of a static storage class in C

• Static global variables: variables declared as static at the top 
level of a source file (outside any function definitions) are only 
visible throughout that source-code file ("file scope", also known 
as "internal linkage").

• Static local variables: variables declared as static inside a 
function are statically allocated while having the same scope as 
automatic local variables. Hence whatever values the function 
puts into its static local variables during one call will still be 
present when the function is called again.
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Volatile variables

• A variable or object declared with the volatile keyword usually 
has special properties related to optimization and/or threading. 

• Generally speaking, the volatile keyword is intended to prevent 
the compiler from applying any optimizations on the code that 
assume values of variables cannot change "on their own."

• Operations on volatile variables are NOT atomic.

• Volatile variables are intended to allow access to memory 
mapped devices.
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Example of memory-mapped I/O

In this example, the code sets the 
value stored in foo to 0. It then 
starts to poll that value 
repeatedly until it changes to 255.

An optimizing compiler will 
notice that no other code can 
change the value stored in foo, 
and will assume that it will remain 
equal to 0 at all times. 

The compiler will then create an 
infinite loop.
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Static vs volatile

• However, foo might represent a 
location that can be changed by other 
events such as interrupts. 

• This code would never detect a change 
in the variable foo through interrupts. 

• The compiler assumes that the current 
program is the only part of the system 
that could change the value (which is 
by far the most common situation).

• We solve this with the volatile 
keyword.
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Compiler optimizations and volatile 
variables

• Unfortunately when you include 
volatile variables, the compile will not 
optimize the code.

• It is usually overkill to mark the 
variable volatile as that disables the 
compiler from optimizing any accesses 
of that variable instead of the ones that 
could be problematic. 

• It is usually a better idea to cast to 
volatile where it is needed.
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Reentrancy
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Reentrant functions 

• Reentrant functions are functions 
that can be called by more than one 
task and that will always work 
correctly, even if the RTOS switches 
from one task to another in the 
middle of executing the function. 

•The function vCountErrors, described 
on the left, does not qualify. 

• You apply three rules to decide if a 
function is reentrant.

static  int cErrors;

void Task1  (void) 
{
  (...)

vCountErrors(9);
  (...)
}

void Task2  (void) 
{
 (...)
 vCountErrors(11);
 (...)
}

void vCountErrors  (int cNewErrors) 
{
  cErrors += cNewErrors; 
}
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Reentrancy rules

1. A reentrant function may not use variables in a non-atomic 
way (unless they are stored on the stack of the task that called 
the function or are otherwise the private variables of that 
task).

2. A reentrant function may not call any other functions that are 
not themselves reentrant.

3. A reentrant function may not use the hardware in a non-
atomic way.
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Reentrant (from wikipedia)

• A computer program or routine is described as reentrant if it 
can be safely executed concurrently; that is, the routine can be 
re-entered while it is already running. To be reentrant, a 
function must:

• Hold no static (global) non-constant data. 

• Must not return the address to static (global) non-constant 
data. 

• Must work only on the data provided to it by the caller. 

• Must not rely on locks to singleton resources. 

• Must not call non-reentrant functions. 

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Concurrency_%2528computer_science%2529
http://en.wikipedia.org/wiki/Concurrency_%2528computer_science%2529
http://en.wikipedia.org/wiki/Singleton
http://en.wikipedia.org/wiki/Singleton
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C-variable storage

•To better understand reentrancy, 
we must understand where the C 
compiler will store variables. 

•  Which of the variables are 
stored on the stack and which in 
a fixed location in memory?

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?"; 
void *vPointer;

void f1 (int parm, int *parm_ptr) 
{

static int static_local; 
int local;
(...)

 }
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C-variable storage

• static_int: is in a fixed location in 
memory and is therefore shared by 
any task that happens to call 
function.

• public_int: Ditto. The only 
difference between static_int and 
public_int is that functions in other 
C files can access public_int, but 
they cannot access static_int. 

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?"; 
void *vPointer;

void f1 (int parm, int *parm_ptr) 
{

static int static_local; 
int local;
(...)

 }
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C-variable storage

• initialized: is in a fixed location 
in memory and is therefore shared 
by any task that happens to call 
function. The initial value makes no 
difference to where the variable is 
stored.

•*string: The same.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?"; 
void *vPointer;

void f1 (int parm, int *parm_ptr) 
{

static int static_local; 
int local;
(...)

 }
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C-variable storage

•vPointer: The pointer itself is in a 
fixed location in memory and is 
therefore a shared variable. 

• If function f1 uses or changes the 
data values pointed to by vPointer, 
then those data values are also 
shared among any tasks that 
happen to call function.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?"; 
void *vPointer;

void f1 (int parm, int *parm_ptr) 
{

static int static_local; 
int local;
(...)

 }
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C-variable storage

•parm: is on the stack. If more than 
one task calls function, parm will be 
in a different location for each, 
because each task has its own stack. 

•parm_ptr: is also on the stack. 
Therefore, f1 can do anything to the 
value of parm_ptr without causing 
trouble. However, if function uses or 
changes the values of whatever is 
pointed to by parm_ptr, then we 
have to ask where that data is 
stored before we know whether we 
have a problem. 

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?"; 
void *vPointer;

void f1 (int parm, int *parm_ptr) 
{

static int static_local; 
int local;
(...)

 }



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

What is actually a static variable?

•A static variable is a variable 
that has been allocated statically (in 
a well defined memory location).

• Its lifetime extends across the 
entire run of the program. 

•This is in contrast to the more 
ephemeral automatic variables (local 
variables), whose storage is 
allocated and deallocated on the call 
stack; and in contrast to objects 
whose storage is dynamically 
allocated.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?"; 
void *vPointer;

void f1 (int parm, int *parm_ptr) 
{

static int static_local; 
int local;
(...)

 }
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C-variable storage

• static_local: is in a fixed location 
in memory. 

• The only difference between 
static_local and static_int is that 
static_int can be used by other 
functions in the same C file, whereas 
static_local can only be used by the 
function f1.

• local: is on the stack

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?"; 
void *vPointer;

void f1 (int parm, int *parm_ptr) 
{

static int static_local; 
int local;
(...)

 }
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This function is not reentrant: 
Problem #1

• The variable fError is in a fixed 
location in memory and is 
therefore shared by any task that 
calls display. 

• The use of fError is not atomic, 
because the RTOS might switch 
tasks between the time that it is 
tested and the time that it is set. 
This function therefore violates 
rule 1. 

• Note that the variable j is no 
problem; it's on the stack. 

// Someone else sets this
BOOL fError;       

void display  (int j) 
{
  if  (!fError) 
  {
    printf  ("\nValue:   %d",   j);
    j  = 0;
    fError = TRUE; 
  }
  
  else 
  {
    printf("Could not display value");
    fError =  FALSE; 
  }
}
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This function is not reentrant: 
Problem #2

•The second problem is that this 
function may violate rule 2 as well. 

•For this function to be reentrant, 
printf must also be reentrant. Is 
printf reentrant?

// Someone else sets this
BOOL fError;       

void display  (int j) 
{
  if  (!fError) 
  {
    printf  ("\nValue:   %d",   j);
    j  = 0;
    fError = TRUE; 
  }
  
  else 
  {
    printf("Could not display value");
    fError =  FALSE; 
  }
}
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Gray areas of reentrancy

•There are some gray areas between reentrant and non-reentrant 
functions. 

•The code here shows a very simple function in the gray area.

•  This function obviously modifies a non-stack variable, but rule 1 says 
that a reentrant function may not use non-stack variables in a non-
atomic way. The question is: is incrementing cErrors atomic?

static  int cErrors;
 
void vCountErrors  (void) {++cErrors; }

Reentrancy rule #1:   A reentrant function may not use variables 
in a non-atomic way (unless they are stored on the stack of the task 
that called the function or are otherwise the private variables of that 
task).
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cErrors is NOT atomic

•If you're using an 8051, an 8-bit micro-controller, then ++cErrors is 
likely to compile into assembly code something like this:

static  int cErrors;
 
void vCountErrors  (void) {++cErrors; }

 MOV   DPTR,#cErrors+01H
 MOVX A,@DPTR
 INC A
 MOVX ©DPTR,A
 JNZ  noCarry
 MOV  DPTR,# cErrors
 MOVX  A,@DPTR
 MOVX ©DPTR,A
noCarry:
 RET

•Which isn't anywhere close to atomic, since it takes nine instructions to 
do the real work, and an interrupt might occur anywhere among them. 
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cErrors is atomic

•if you're using an Intel 80x86, you might get:

static  int cErrors;
 
void vCountErrors  (void) {++cErrors; }

INC (cErrors)
RET

• Which is atomic!

• If you really need the performance of the one-instruction function and 
you're using an 80x86 and you put in lots of comments, perhaps you 
can get away with writing vCountErrors this way. 

• However, there's no way to know that it will work with the next 
version of the compiler or with some other microprocessor to which 
you later have to port it. 


