
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

RTOS: Tasks, Task data and
Reentrant functions

Reference: Simon Chapter 6

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Real-time operating systems (RTOS)

• Most real-time operating systems are different from desktop
machine operating systems.

• On a desktop computer the operating system takes control of
the machine as soon as it is turned on and then lets you start
your applications.

• You compile and link your applications separately from the
operating system.

• In an embedded system, you usually link your application and the
RTOS. At boot-up time, your application usually gets control
first, and it then starts the RTOS.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Embedded RTOS

• The application and the RTOS are tightly tied in an embedded
system.

• Many RTOSs do not protect themselves as carefully from your
application as do desktop operating systems.

• For example:

• Desktop computers usually check that any pointer you pass
into a function is valid.

• Embedded RTOS usually skip this for better performance.

• Why? A bad pointer will crash the desktop application, but not
the entire OS. In a embedded system, a bad pointer will crash
the entire embedded system and its single application.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Customizing your RTOS

• To save memory RTOSs typically include just the services that
you need for your embedded system and no more.

• Most RTOS allow you to configure them extensively so you don’t
link unnecessary parts to your code.

• Unless you need them, you can configure away things such as I/O
drivers or even memory management.

• You don’t usually write your own RTOS but buy it from a vendor
such as VxWorks, VRTX, pSOS, Nucleus, C Executive, LynxOS,
QNX, Multi-Task!, AMX, and dozens more.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

The different RTOSs

• Unless your requirements for speed or code size or robustness
are extreme, the commercial RTOSs represent a good value, in
that they come already debugged and with a good collection of
features and tools.

• In many ways the systems are very similar to one another: they
offer most or all of the services discussed we will be discussing
over the next couple of lectures.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Tasks and task states

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Definition of a task

• Task: it’s the basic building block of software written under an
RTOS.

• Tasks are very simple: in most RTOS a task is just a sub-routine.

• At some point in your program, you call a function in the RTOS
that starts a task; you tell which subroutine is the starting point
for each task and some other parameters.

• There are no limit in the number of tasks in most RTOS.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Each task in an RTOS is always in one
of three states

• Running: which means that the microprocessor is executing
the instructions that make up this task.

• Ready: which means that some other task is in the running
state but that this task has things that it could do if the
microprocessor becomes available. Any number of tasks can be
in this state.

• Blocked: which means that this task hasn't got anything to do
right now, even if the microprocessor becomes available. Tasks
get into this state because they are waiting for some external
event. Any number of tasks can be in this state as well.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Handful of other states

• Most RTOSs may offer many other other task states. Such as
suspended, pended, waiting, dormant, and delayed.

• We are just going to focus on the running, ready and
blocked states.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

The scheduler

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a scheduler

•The scheduler: A part of the RTOS which keeps track of the
state of each task and decides which one task should go into
the running state.

•Very simple behavior: schedulers look at priorities you
assign to the tasks, and among the tasks that are not in the
blocked state, the one with the highest priority runs, and
the rest of them wait in the ready state.

•The lower-priority tasks just have to wait; the scheduler
assumes that you knew what you were doing when you set the
task priorities.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Task states

•Block means "move into
the blocked state,"

•Run means "move into the
running state“ or "be in the
running state,"

•Switch means "change
which task is in the running
state."

A piece of code (task) can be
in any of the following states...

In single core systems: only
one task can be running!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Consequence #1: Only a task can
block itself

• A task will only switch to
the block state when it
decides for itself that it
has run out of things to do
(or that is waiting for
something else).

• Other tasks cannot
decide that a should go to
the block state.

• A task has to be running
before going to the block
state.

A piece of code (task) can be
in any of the following states...

In single core systems: only
one task can be running!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Consequence #2: Only other tasks or
interrupts can switch a task to ready!

• While a task is in the
blocked state, it never
gets the microprocessor.

•So, an interrupt routine
or some other task in
the system must be able
to signal that whatever
the task was waiting for
has happened.

•Otherwise, the task will
be blocked forever.

A piece of code (task) can be
in any of the following states...

In single core systems: only
one task can be running!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Consequence #3: The scheduler
controls which tasks to run next

• The shuffling of tasks
between the ready and
running states is entirely the
work of the scheduler.

• Tasks can block
themselves, and tasks and
interrupt routines can move
other tasks from the
blocked state to the ready
state, but the scheduler has
control over the running
state.

A piece of code (task) can be
in any of the following states...

In single core systems: only
one task can be running!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Some common questions
about the scheduler and task

states

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How does the scheduler knows the
different task states?

•Q: How does the scheduler know when a task has become
blocked or unblocked?

•A: The RTOS provides a collection of functions that tasks can
call to tell the scheduler what events they want to wait for and
to signal that events have happened.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What happens if all the tasks are
blocked?

• If all the tasks are blocked, then the scheduler will spin
in some tight loop somewhere inside of the RTOS, waiting
for something to happen.

• If nothing ever happens, then that's your fault!!!

• You must make sure that something happens sooner or later
by having an interrupt routine that calls some RTOS function
that unblocks a task. Otherwise, your software will not be
doing very much.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What if two tasks with the same
priority are ready?

•Q: What if two tasks with the same priority are ready?

•A: Depends on which RTOS you use.

1. Some RTOS make it illegal to have two tasks with the same
priority.

2. Other RTOS will time-slice between two such tasks.

3. A ROTS can also run one random task until it blocks and
then run the other.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Selecting which tasks to run

•Q: If one task is running and another, higher-priority task
unblocks, does the task that is running get stopped and moved
to the ready state right away?

•A: Depends on the RTOS. A preemptive RTOS will stop a
lower-priority task as soon as the higher-priority task
unblocks. A nonpreemptive RTOS will only take the
microprocessor away from the lower-priority task when that
task blocks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Tank monitoring system

• Imagine I have 300 watering tanks
in my greenhouse

• I have one microprocessor that
constantly monitors the water level
at every single tank.

• It takes a while to determine the
water level for each tank.

• Whenever I press a button I want
to immediately know the water
level for a particular tank.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pseudo-code for a tank monitoring
system

•vLevelsTask task uses up a lot of
computing time figuring out
how much water is in the tanks

•Low-priority: vLevelsTask task

•High-priority: vButtonTask task

•One convenient feature of the
RTOS is that the two tasks can
be written independently of one
another, and the system will still
respond well.

/* "Button Task" */
void vButtonTask (void) /* High priority */
{
 while (TRUE)
 {
 !! Block until user pushes a button
 !! Quick: respond to the user
 }
}

/* "Levels Task" */
void vLevelsTask (void) /* Low priority */
{
while (TRUE) {
 !! Read levels of floats in tank
 !! Calculate average float level
 !! Do some interminable calculation
 !! Do more interminable calculation
 !! Do yet more interminable calculation
 !! Figure out which tank to do next
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Microprocessor responds to a button
under an RTOS

Blocked: task is
waiting for other
things to do.

Ready: task is
ready to do useful
stuff.

Running: tasks is
currently executing.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Microprocessor responds to a button
under an RTOS

Blocked: task is
waiting for other
things to do.

Ready: task is
ready to do useful
stuff.

Running: tasks is
currently executing.

vButtonTask is blocked
because the button
hasn’t been pressed!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Microprocessor responds to a button
under an RTOS

Blocked: task is
waiting for other
things to do.

Ready: task is
ready to do useful
stuff.

Running: tasks is
currently executing.

Button is pressed, so
vLevelsTask is now back

to the ready state...
because it can resume

operation anytime.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

The three different states

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

 RTOS initialization code

/* "Button Task" */
void vButtonTask (void) /* High priority */
{
 while (TRUE)
 {
 !! Block until user pushes a button
 !! Quick: respond to the user
 }
}

/* "Levels Task" */
void vLevelsTask (void) /* Low priority */
{
while (TRUE) {
 !!Read levels of floats in tank
 !!Calculate average float level
 !!Do some interminable calculation
 !!Do more interminable calculation
 !!Do yet more interminable calculation
 !!Figure out which tank to do next
 }
}

void main (void)
{
 //Initialize (but do not start) the RTOS
 InitRTOS ();

 // Tell the RTOS about our tasks
 StartTask (vRespondToButton, HIGH_ PRIOTY);
 StartTask (vCalculateTankLevels, L0W_PRIOTY);

 //Start the RTOS.
 //(This function never returns.)
 StartRTOS ();
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Tasks and data

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Tasks and data

•Each task has its own private context, which includes
the register values, a program counter, and a stack.

•All other data is shared among all of the tasks in the system
(e.g global, static, initialized, uninitialized, and other data).

•The RTOS typically has its own private data structures, which
are not available to any of the tasks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example

• Task 1, Task 2, and Task 3
can access any of the data
in the system.

• Each task has its own
private context, which
includes the register
values, a program counter,
and a stack.

•The RTOS has some
private data structures,
which are not available to
any of the tasks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Sharing data variables between tasks

• Since you can share data variables among tasks, it is easy to
move data from one task to another: the two tasks need only
have access to the same variables.

•You can easily accomplish this by having the two tasks in the
same module in which the variables are declared, or you can
make the variables public in one of the tasks and declare them
extern in the other.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

struct {
long ITankLevel;
long lTimellpdated;
} tankdata[MAX_TANKS];

//"Button Task"
//High priority
void vRespondToButton (void)
{
 int i;
 while (TRUE)
 {
 !!Block until user pushes a button
 i = !!ID of button pressed;
 printf ("\nTIME: %081d LEVEL: %081d",
 tankdata[i].ITimeUpdated,
 tankdata[i].ITankLevel);
 }
}

//"Levels Task"
//Low priority
void vCalculateTankLevels (void)
{
 int i =0;
 while (TRUE)
 {
 !!Read levels of floats in tank i
 !!Do more interminable calculation
 !!Do yet more interminable calculation

 //Store the result
 tankdata[i].ITimeUpdated = !!Current time

 //Between these two instructions is a
 //bad place for a task switch
 tankdata[i].ITankLevel = !!Calc. Result

 !!Figure out which tank to do next
 i = !!something new
 }
}

• vRespondToButton task prints out some data that is maintained by the
vCalculateTankLevels task.
• Both tasks can access the tankData array of structures just as they
could if this system were written without an RTOS.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Shared-data problems

• Bugs may show up because an interrupt routine shares data
with task code in the system.

• Two tasks are sharing data, and unfortunately all of the same
kinds of bugs we previously discussed will show up again.

• The RTOS might stop vCalculateTankLevels at any time and
run vRespondToButton.

• However, the RTOS might stop vCalculateTankLevels right in
the middle of setting data in the tankdata array (which is not an
atomic operation), and vRespondToButton might then read
that half-changed data.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Tasks can share code

• In this example, both Task1 and
Task2 call function vCountErrors.

• This is a perfectly valid thing to
do in an RTOS

• Any or all of the tasks can share
as many functions as it is
convenient.

static int cErrors;

void Task1 (void)
{
 (...)

vCountErrors(9);
 (...)
}

void Task2 (void)
{
 (...)
 vCountErrors(11);
 (...)
}

void vCountErrors (int cNewErrors)
{
 cErrors += cNewErrors;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Potential bug on this example

• Task1 and Task2 call
vCountErrors, and since
vCountErrors uses the variable
cErrors, the variable cErrors is
now shared by the two tasks.

• If Task1 calls vCountErrors, and
if the RTOS then stops Task1
and runs Task2, which then calls
vCountErrors, the variable
cErrors may get corrupted in
just the same way as it would if
Task2 were an interrupt routine
that had interrupted Task1.

static int cErrors;

void Task1 (void)
{
 (...)

vCountErrors(9);
 (...)
}

void Task2 (void)
{
 (...)
 vCountErrors(11);
 (...)
}

void vCountErrors (int cNewErrors)
{
 cErrors += cNewErrors;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How can cErrors become corrupted?
(Part 1)

• cErrors = cErrors + cNewErrors;

• Move cErrors into register R1

• Add cNewErrors to register R1
and store the result in R1

• Move the contents of R1 into the
memory location where cErrors
is.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How can cErrors become corrupted?
(Part 2)

• Suppose that the value 5 is initially
stored in cErrors.

• Suppose that Task1 calls
vCountErrors(9), and suppose
that vCountErrors does the
MOVE and ADD instructions,
leaving the result in register
R1(14).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How can cErrors become corrupted?
(Part 3)

• Remember: each task has their
own stack which have unique
register values.

• Suppose now that the RTOS stops
Task1 and runs Task2 and that
Task2 calls vCountErrors(11).

• The code in vCountErrors fetches
the old value of cErrors(5), adds
11 to it, and stores the result(16).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How can cErrors become corrupted?
(Part 4)

• Eventually, the RTOS switches
back to Task1, which then
executes the next instruction in
vCountErrors, saving whatever is
in register R1(14) to cErrors and
overwriting the value written by
Task2(16).

• Instead of cErrors ending up as 25
(the original 5, plus 11 plus 9), it
ends up as 14, which is incorrect!

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Automatic, static and volatile,
variables in C

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of an automatic variable

• The variable_z is initialized
inside the function hello_function.

• Its scope is only within the
hello_function.

• The contents of the variable_z
will be erased after we leave the
hello_function.

• Variable_z is located in the
stack.

#include <stdio.h>

void hello_function(int b)
{
 int variable_z = 0;

 //same as variable_z = variable_z + b
 variable_z += b;

 //outputs the value of variable_z
 printf("%d\n", variable_z);
}

int main(int argc, char * const argv[]) {
 hello_function(10); // prints 10
 hello_function(12); // prints 12
 return 0;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Static variables

• A static variable is a variable that has been allocated statically.

• Its lifetime extends across the entire run of the program.

• This is in contrast to the more ephemeral automatic variables
(local variables), whose storage is allocated and deallocated on
the call stack; and in contrast to objects whose storage is
dynamically allocated.

• Static variables are stored in a fixed memory location (NOT on
the stack).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of a static variable

• Even though its inside a
function, the variable x is only
initialized once.

• The contents of the variable
will be incremented every
time func() is entered

#include <stdio.h>

void func()
{
 //x is initialized only once across three
 //calls of func()
 static int x = 0;

 //outputs the value of x
 printf("%d\n", x);
 x = x + 1;
}

int main(int argc, char * const argv[]) {
 func(); // prints 0
 func(); // prints 1
 func(); // prints 2
 return 0;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Static is a storage class

• In C, static is a reserved word controlling both lifetime (as
discussed on previous slides) and linkage (visibility).

• To be precise, static is a storage class (not to be confused
with classes in object-oriented programming), as are extern, auto
and register (which are also reserved words).

• Every variable and function has one of these storage classes; if a
declaration does not specify the storage class, a context-
dependent default is used.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Effects of a static storage class in C

• Static global variables: variables declared as static at the top
level of a source file (outside any function definitions) are only
visible throughout that source-code file ("file scope", also known
as "internal linkage").

• Static local variables: variables declared as static inside a
function are statically allocated while having the same scope as
automatic local variables. Hence whatever values the function
puts into its static local variables during one call will still be
present when the function is called again.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Volatile variables

• A variable or object declared with the volatile keyword usually
has special properties related to optimization and/or threading.

• Generally speaking, the volatile keyword is intended to prevent
the compiler from applying any optimizations on the code that
assume values of variables cannot change "on their own."

• Operations on volatile variables are NOT atomic.

• Volatile variables are intended to allow access to memory
mapped devices.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example of memory-mapped I/O

In this example, the code sets the
value stored in foo to 0. It then
starts to poll that value
repeatedly until it changes to 255.

An optimizing compiler will
notice that no other code can
change the value stored in foo,
and will assume that it will remain
equal to 0 at all times.

The compiler will then create an
infinite loop.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Static vs volatile

• However, foo might represent a
location that can be changed by other
events such as interrupts.

• This code would never detect a change
in the variable foo through interrupts.

• The compiler assumes that the current
program is the only part of the system
that could change the value (which is
by far the most common situation).

• We solve this with the volatile
keyword.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Compiler optimizations and volatile
variables

• Unfortunately when you include
volatile variables, the compile will not
optimize the code.

• It is usually overkill to mark the
variable volatile as that disables the
compiler from optimizing any accesses
of that variable instead of the ones that
could be problematic.

• It is usually a better idea to cast to
volatile where it is needed.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Reentrancy

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Reentrant functions

• Reentrant functions are functions
that can be called by more than one
task and that will always work
correctly, even if the RTOS switches
from one task to another in the
middle of executing the function.

•The function vCountErrors, described
on the left, does not qualify.

• You apply three rules to decide if a
function is reentrant.

static int cErrors;

void Task1 (void)
{
 (...)

vCountErrors(9);
 (...)
}

void Task2 (void)
{
 (...)
 vCountErrors(11);
 (...)
}

void vCountErrors (int cNewErrors)
{
 cErrors += cNewErrors;
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Reentrancy rules

1. A reentrant function may not use variables in a non-atomic
way (unless they are stored on the stack of the task that called
the function or are otherwise the private variables of that
task).

2. A reentrant function may not call any other functions that are
not themselves reentrant.

3. A reentrant function may not use the hardware in a non-
atomic way.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Reentrant (from wikipedia)

• A computer program or routine is described as reentrant if it
can be safely executed concurrently; that is, the routine can be
re-entered while it is already running. To be reentrant, a
function must:

• Hold no static (global) non-constant data.

• Must not return the address to static (global) non-constant
data.

• Must work only on the data provided to it by the caller.

• Must not rely on locks to singleton resources.

• Must not call non-reentrant functions.

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Concurrency_%2528computer_science%2529
http://en.wikipedia.org/wiki/Concurrency_%2528computer_science%2529
http://en.wikipedia.org/wiki/Singleton
http://en.wikipedia.org/wiki/Singleton

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-variable storage

•To better understand reentrancy,
we must understand where the C
compiler will store variables.

• Which of the variables are
stored on the stack and which in
a fixed location in memory?

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?";
void *vPointer;

void f1 (int parm, int *parm_ptr)
{

static int static_local;
int local;
(...)

 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-variable storage

• static_int: is in a fixed location in
memory and is therefore shared by
any task that happens to call
function.

• public_int: Ditto. The only
difference between static_int and
public_int is that functions in other
C files can access public_int, but
they cannot access static_int.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?";
void *vPointer;

void f1 (int parm, int *parm_ptr)
{

static int static_local;
int local;
(...)

 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-variable storage

• initialized: is in a fixed location
in memory and is therefore shared
by any task that happens to call
function. The initial value makes no
difference to where the variable is
stored.

•*string: The same.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?";
void *vPointer;

void f1 (int parm, int *parm_ptr)
{

static int static_local;
int local;
(...)

 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-variable storage

•vPointer: The pointer itself is in a
fixed location in memory and is
therefore a shared variable.

• If function f1 uses or changes the
data values pointed to by vPointer,
then those data values are also
shared among any tasks that
happen to call function.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?";
void *vPointer;

void f1 (int parm, int *parm_ptr)
{

static int static_local;
int local;
(...)

 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-variable storage

•parm: is on the stack. If more than
one task calls function, parm will be
in a different location for each,
because each task has its own stack.

•parm_ptr: is also on the stack.
Therefore, f1 can do anything to the
value of parm_ptr without causing
trouble. However, if function uses or
changes the values of whatever is
pointed to by parm_ptr, then we
have to ask where that data is
stored before we know whether we
have a problem.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?";
void *vPointer;

void f1 (int parm, int *parm_ptr)
{

static int static_local;
int local;
(...)

 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is actually a static variable?

•A static variable is a variable
that has been allocated statically (in
a well defined memory location).

• Its lifetime extends across the
entire run of the program.

•This is in contrast to the more
ephemeral automatic variables (local
variables), whose storage is
allocated and deallocated on the call
stack; and in contrast to objects
whose storage is dynamically
allocated.

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?";
void *vPointer;

void f1 (int parm, int *parm_ptr)
{

static int static_local;
int local;
(...)

 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-variable storage

• static_local: is in a fixed location
in memory.

• The only difference between
static_local and static_int is that
static_int can be used by other
functions in the same C file, whereas
static_local can only be used by the
function f1.

• local: is on the stack

static int static_int;

int public_int;
int initialized = 4;

char *string = "Where is this string?";
void *vPointer;

void f1 (int parm, int *parm_ptr)
{

static int static_local;
int local;
(...)

 }

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

This function is not reentrant:
Problem #1

• The variable fError is in a fixed
location in memory and is
therefore shared by any task that
calls display.

• The use of fError is not atomic,
because the RTOS might switch
tasks between the time that it is
tested and the time that it is set.
This function therefore violates
rule 1.

• Note that the variable j is no
problem; it's on the stack.

// Someone else sets this
BOOL fError;

void display (int j)
{
 if (!fError)
 {
 printf ("\nValue: %d", j);
 j = 0;
 fError = TRUE;
 }

 else
 {
 printf("Could not display value");
 fError = FALSE;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

This function is not reentrant:
Problem #2

•The second problem is that this
function may violate rule 2 as well.

•For this function to be reentrant,
printf must also be reentrant. Is
printf reentrant?

// Someone else sets this
BOOL fError;

void display (int j)
{
 if (!fError)
 {
 printf ("\nValue: %d", j);
 j = 0;
 fError = TRUE;
 }

 else
 {
 printf("Could not display value");
 fError = FALSE;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Gray areas of reentrancy

•There are some gray areas between reentrant and non-reentrant
functions.

•The code here shows a very simple function in the gray area.

• This function obviously modifies a non-stack variable, but rule 1 says
that a reentrant function may not use non-stack variables in a non-
atomic way. The question is: is incrementing cErrors atomic?

static int cErrors;

void vCountErrors (void) {++cErrors; }

Reentrancy rule #1: A reentrant function may not use variables
in a non-atomic way (unless they are stored on the stack of the task
that called the function or are otherwise the private variables of that
task).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

cErrors is NOT atomic

•If you're using an 8051, an 8-bit micro-controller, then ++cErrors is
likely to compile into assembly code something like this:

static int cErrors;

void vCountErrors (void) {++cErrors; }

 MOV DPTR,#cErrors+01H
 MOVX A,@DPTR
 INC A
 MOVX ©DPTR,A
 JNZ noCarry
 MOV DPTR,# cErrors
 MOVX A,@DPTR
 MOVX ©DPTR,A
noCarry:
 RET

•Which isn't anywhere close to atomic, since it takes nine instructions to
do the real work, and an interrupt might occur anywhere among them.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

cErrors is atomic

•if you're using an Intel 80x86, you might get:

static int cErrors;

void vCountErrors (void) {++cErrors; }

INC (cErrors)
RET

• Which is atomic!

• If you really need the performance of the one-instruction function and
you're using an 80x86 and you put in lots of comments, perhaps you
can get away with writing vCountErrors this way.

• However, there's no way to know that it will work with the next
version of the compiler or with some other microprocessor to which
you later have to port it.

