Semaphores and shared data

Reference: Simon Chapter 6

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Shared data problems

* RTOS can cause a new class of shared-data problems by:
» Switching the microprocessor from task to task

» Changing the flow of execution (similar to interrupts)

* Something called semaphores helps preventing shared
data problems.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Trains do two things with semaphores

| . When a train leaves
the protected section
of track, it raises the
semaphore.

2. When a train comes
to a semaphore, it waits
for the semaphore to
rise, if necessary, passes
through the (now
" | raised) semaphore, and
i lowers the semaphore.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

The typical semaphore in an RTOS
works much the same way

No trains
allowed in!

Train waits
until this
flag is
raised...

Train leaves
1 ~ the protected
I o section,
RaRo allowing the

other train

IN...
CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

RTOS semaphores

* Most RTOS normally use the paired terms take and release.
Other RTOS paired terms may be get-give, pend-post, wait-signal.

* Tasks can call two RTOS functions, TakeSemaphore and
ReleaseSemaphore.

* |f one task has called Take-Semaphore to take the semaphore and
has not called ReleaseSemaphore to release it, then any other
task that calls TakeSemaphore will be blocked until the first task
calls ReleaseSemaphore.

* Only one task can have the semaphore at a time.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Tank monitoring system

* Imagine | have 300 watering tanks
in my greenhouse

* | have one microprocessor that
constantly monitors the water level
IS at every single tank.

¢ |t takes a while to determine the
water level for each tank.

* Whenever | press a button | want
to immediately know the water
level for a particular tank.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Tank monitoring system implemented
with semaphores

struct

{

/* "Levels Task" - Low priority */
void vCalculateTankLevels

long ITankLevel;
long ITimeUpdated;
} tankdata[MAX TANKS];

/* "Button Task" - High priority */
void vRespondToButton (void)

{

int 1i;

while

{

!'' Block until wuser pushes a button
1 = !! Get ID of button pressed

(TRUE)

TakeSemaphore () ;

printf ("\nTIME: %081d LEVEL:
tankdata[i] .ITimeUpdated,
tankdata[i] .ITankLevel) ;

ReleaseSemaphore () ;

z081d",

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

volid main

(void)
{

int 1 = 0;

while (TRUE)

{

(...)

TakeSemaphore () ;

' Set tankdatal[i].ITimeUpdated
'l Set tankdatali].ITankLevel
ReleaseSemaphore () ;

(...)
}

(void)
{

//Initialize
InitRTOS () ;

(but do not start) the RTOS

StartTask
StartTask

(VRespondToButton,
(vCalculateTankLevels,

HIGH PRIOTY);
LOW PRIOTY) ;

//Start the RTOS.
StartRTOS () ;

WESTERN NEW ENGLAND
UNIVERSITY

Sequence of events for the “tank
monitoring system’ (part |/2)

If the user presses a button while the levels task is still modifying
the data and still has the semaphore, then the following sequence
of events occurs:

|. The RTOS will switch to the "button task," just as before, moving
the levels task to the ready state.

2.When the button task tries to get the semaphore by calling
TakeSemaphore, it will block because the levels task already has
the semaphore.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Sequence of events for the “tank
monitoring system’ (part 2/2)

3. The RTOS will then look around for another task to run and will
notice that the levels task is still ready.With the button task
blocked, the levels task will get to run until it releases the
semaphore.

4. When the levels task releases the semaphore by calling
ReleaseSemaphore, the button task will no longer be blocked, and

the RTOS will switch back to it.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Code in the vCalculateTanklLevels task.

Entire sequence of ...
events for the

€ ¢ I ° °
ta’ n (m O n Ito rl ng \ The user pushes a button; the
) Efgzzgri&tzgggoﬁv;?csies ta ks\
; SKS.
system '

i=1! Get ID of button

(This does not return yet)

The semaphore is not available; the/
button task blocks; the RTOS

switches back.

Code in the vRespondToButton task.

Button task is blocked
waiting for a button.

Il Set tankdatal[i].l1TankLevel
ReleaseSemaphore ();

\‘ R eleasing the semaphore unblocks
the button task; the RTOS
switches again. \

(Now TakeSemaphore returns)

pEiREE - i)

ReleaseSemaphore ();

!'! Block until user pushes a button

The button task blocks; the RTOS

/ resumes the levels task.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Another example: nuclear

reactor temperature checking

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Premise for the shared-data problem

e This is a nuclear reactor.

* Periodic temperature
measurements occur at two
separate locations.

* |[f the temperature at these
two locations are different
then sound the alarm!

* Different temperatures
means we may have a
nuclear fallout!

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

#define TASK PRIORITY READ 11
#define TASK PRIORITY CONTROL 12
#define STK SIZE 1024
static unsigned int ReadStk
static unsigned int ControlStk
static int iTemperatures|[Z];
OS EVENT *p semTemp;

[STK_SIZE];
[STK_SIZE];

vold main (void)

{

//Initialize (but do not start) the RTOS

OSInit (),

// Tell the RTOS about our tasks

OSTaskCreate (
vReadTemperatureTask, NULLP,
(void *) &ReadStk[STK SIZE],
TASK PRIORITY READ

) ;

OSTaskCreate (
vControlTask, NULLP,
(void *) &ControlStk[STK SIZE],
TASK_PRIORITY_CONTROL);

//Start the RTOS.
//This function never returns.
OSStart () ;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

void vControlTask

{

p semTemp = OSSemlnit
while

{

vold vReadTemperatureTask

{

while

{

(void)

(1)
(TRUE)

OSSemPend
1f |
iTemperatures[0] != i1iTernperatures[l])
''Set off howling alarm;

(p_semTemp, WAIT FOREVER) ;

OSSemPost (p semTemp) ;
!'!" Do other useful work

(void)
(TRUE)

//Delay of 0.25 seconds

OSTimeDly (5);

OSSemPend (p semTemp, WAIT FOREVER);
'l read in iTemperatures[0];

' read in iTemperatures|[l];
OSSemPost (p semTemp) ;

WESTERN NEW ENGLAND
UNIVERSITY

#define TASK PRIORITY READ 11
#define TASK_PRIORITY_CONTROL 12
#define STK SIZE 1024

static unsigned int ReadStk [STK SIZE];
static unsigned int ControlStk [STK SIZE]; OS_EVENT structure

tat] int 1T T (21 .
0S EVENT *p semTemp; (defined in the RTOS)
| | | stores the data that
vold main (vo1id)
{ represents the semaphore.

//Initialize (but do not start) the RTOS
OSInit (),

// Tell the RTOS about our tasks

OSTaskCreate (
vReadTemperatureTask, NULLP,
(void *) &ReadStk[STK SIZE],
TASK PRIORITY READ

) ;

OSTaskCreate (
vControlTask, NULLP,
(void *) &ControlStk[STK SIZE],
TASK_PRIORITY_CONTROL);

//Start the RTOS.
//This function never returns.
OSStart () ;

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

void vControlTask (void)

A task rather than an {

. . . p semTemp = OSSemlnit (1);
interrupt routine reading while (TRUE)

the temperatures. |

OSSemPend (p semTemp, WAIT FOREVER) ;
if |
iTemperatures[0] != i1iTernperatures[l])

OSSemPost and ''Set off howling alarm;
OSSemPend functions OSsemPost (p_semTemp) ;
!'' Do other useful work
raise and lower the

semaphore.

vold vReadTemperatureTask (void)

WAIT FOREVER " yhile (TRUE)

{
Parameter to the //Delay of 0.25 seconds
. OSTimeDly (5);
OssemPend funCtlon OSSemPend (p semTemp, WAIT FOREVER) ;
indicates that the task !! read in iTemperatures[0];
. . . ' read in iTemperatures|[l];
making the call is willing to OSSemPost (p_semTemp) ;
. }
wait forever for the \
semaphore.

CPE 355 - Real Time Embedded Kernels - Spring ‘12

WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

vControlTask checks

—¥» volid vControlTask

continuously that the two
temperatures are equal.

The calls to OSSemPend
and OSSemPost in this
code fix the shared-data
problems.

OSTimeDly function
causes current task to
block for a certain time;
the event that unblocks it
is simply the expiration of
that amount of time.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

~~

(void)
{
p semTemp = OSSemlnit
while (TRUE)
{
OSSemPend
1f |
iTemperatures[0] != i1iTernperatures[l])
''Set off howling alarm;

(1)

(p_semTemp, WAIT FOREVER);

OSSemPost (p semTemp) ;
!'!" Do other useful work

vold vReadTemperatureTask

{

(void)

while

{

//Delay of 0.25 seconds
OSTimeDly (5);

OSSemPend (p semTemp, WAIT FOREVER);
'l read in iTemperatures[0];
' read in iTemperatures|[l];
OSSemPost (p semTemp) ;

}

(TRUE)

}

WESTERN NEW ENGLAND
UNIVERSITY

The function OSSemlnit
initializes a semaphore.

...What is the problem
with this code???

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

void vControlTask (void)

{
p semTemp = OSSemlnit (1);

while (TRUE)
{
OSSemPend
1f (
iTemperatures[0] != i1iTernperatures[l])
''Set off howling alarm;

(p_semTemp, WAIT FOREVER);

OSSemPost (p semTemp) ;
!'!" Do other useful work

vold vReadTemperatureTask (void)

{

while

{

(TRUE)

//Delay of 0.25 seconds

OSTimeDly (5);
OSSemPend (p semTemp, WAIT FOREVER);

'l read in iTemperatures[0];
' read in iTemperatures|[l];

OSSemPost (p semTemp) ;

WESTERN NEW ENGLAND
UNIVERSITY

OSSemlnit must happen
before vRead-
TemperatureTask calls
OSSemPend to use the
semaphore.

How do you know that
this really happens? You
don't.

... VRead TemperatureTask
calls OSTimeDly at the
beginning before calling

OSSemPend, vControlTask
should (but not
necessarily) have enough
time to call OSSemlnit.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

volid vControlTask (void)
{
p semTemp = OSSemlnit (1);
while (TRUE)
{
OSSemPend (p semTemp, WAIT FOREVER);
if |
iTemperatures[0] != i1iTernperatures[l])
''Set off howling alarm;

OSSemPost (p semTemp) ;
!'!" Do other useful work

vold vReadTemperatureTask (void)
{
while (TRUE)
{
//Delay of 0.25 seconds
OSTimeDly (5);
OSSemPend (p semTemp, WAIT FOREVER);
'l read in iTemperatures[0];
' read in iTemperatures|[l];
OSSemPost (p semTemp) ;
}
}

WESTERN NEW ENGLAND

How do you know that
there isn't some higher-
priority task that takes up
all of the delay time in
vRead TemperatureTask!?

OSTimeDly is an attempt
at ensuring the system will
work as desired.

Best solution is to put
OSSemlnit in some start-
up code that's guaranteed
to run first... such as the

main function.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

void vControlTask (void)

{
p semTemp = OSSemlnit (1);
while (TRUE)
{

OSSemPend (p semTemp, WAIT FOREVER);
if |

iTemperatures[0] != i1iTernperatures[l])
''Set off howling alarm;

OSSemPost (p semTemp) ;
!'!" Do other useful work

vold vReadTemperatureTask (void)
{
while (TRUE)
{
//Delay of 0.25 seconds
OSTimeDly (5);
OSSemPend (p semTemp, WAIT FOREVER);
'l read in iTemperatures[0];
' read in iTemperatures|[l];
OSSemPost (p semTemp) ;
}
}

WESTERN NEW ENGLAND

Reentrancy and semaphores

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Semaphores make a function reentrant

yoia faskh (void) ® The code that modifies cErrors is
(.. surrounded by calls to semaphore

vCountErrors (9); .
(...) routines.

}
void Task?2 (void) .
® |n the language of data sharing, we

(
(...) have protected cErrors with a

vCountErrors (11);

TR semaphore.

static int cErrors; ® \Whichever task calls vCountErrors
static SEMAPHORE semkErrors; . . .
second will be blocked when it tries

vold vCountErrors (int cNewErrors)
to take the semaphore.

{
OSSemPend (&semErrors, SUSPEND) ;

cErrors += cNewkErrors;
0SSemPost (&semErrors) ; .We have made the use Of cErrors

} atomic and therefore have made
the function vCountErrors reentrant.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Reentrancy and semaphores

volid Taskl (void)

{

(...)
OSSemPend (&semErrors, SUSPEND) ;

vCountErrors (9);
OSSemPost (&semErrors):;

(...)
)
jore daske (vord) ® Does this code still work if the calls
to OSSemPend and OSSemPost are

(...)

OSSemPend (&semErrors, SUSPEND) ;
now around the calls to

OSSemPost (&semErrors); . .
vCountErrors instead of being

vCountErrors (11);
(...)

/ within the function itself?

static int cErrors;
static SEMAPHORE semErrors;

vold vCountErrors (int cNewErrors)

{

cErrors += cNewkrrors;

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Reentrancy and semaphores

volid Taskl (void)

{

(...)
OSSemPend (&semErrors, SUSPEND) ;

vCountErrors (9);
OSSemPost (&semErrors);

() . . :
} ® Does this code still work if the calls
void Taskz (void) to OSSemPend and OSSemPost are

{
(...) now around the calls to
OSSemPend (&semErrors, SUSPEND) ; . .
vCountErrors instead of being

vCountErrors (11);

OSSemPost (&semErrors);

() within the function itself?
}

® Yes!

static int cErrors;
static SEMAPHORE semErrors;

vold vCountErrors (int cNewErrors)

{

cErrors += cNewEkErrors;

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Multiple semaphores

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Multiple semaphores

® The semaphore functions all take a parameter that identifies
the semaphore that is being initialized, lowered, or raised.

® The semaphores are all independent of one another: if one
task takes semaphore A, another task can take semaphore B
without blocking. Similarly, if one task is waiting for semaphore
C, that task will still be blocked even if some other task
releases semaphore D.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

What's the advantage of having
multiple semaphores!?

® Whenever a task takes a semaphore, it is potentially slowing
the response of any other task that needs the same
semaphore.

® |n a system with only one semaphore, if the lowest-priority
task takes the semaphore to change data in a shared array of
temperatures, the highest-priority task might block waiting for
that semaphore.

® By having one semaphore protect the temperatures and a
different semaphore protect the error count, you can build
your system so the highest-priority task can modify the error
count even if the lowest-priority task has taken the semaphore
protecting the temperatures. Different semaphores can
correspond to different shared resources.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

How does the RTOS know which
semaphore protects which data!

¢ It doesn't. If you are using multiple semaphores, it is up to
you to remember which semaphore corresponds to which
data.

® A task that is modifying the error count must take the
corresponding semaphore.

® You must decide what shared data each of your semaphores
protects.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Semaphores as a signaling device

® Another common use of semaphores is as a simple way to
communicate from one task to another (or from an interrupt

routine to a task).

//Semaphore to wait for report to finish.
static 0S EVENT *semaphoreA;

vold taskA (void)

{
(o02)

//Initialize the semaphore

semPrinter = OSSemlnit (O); The semaphoreA will only

//take the semaphore
OSSemPend (&semaphoreA, SUSPEND) ; be released after the

() interruptA occurs.

}

vold interruptA (void)

{

//Release the semaphore.
OSSemPost (&semaphorelh) ;

}

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Semaphore problems

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Semaphore problem cause #1:
Forgetting to take the semaphore

® Semaphores do NOT solve all our shared-data problems.

® |n fact, your systems will probably work better, the fewer times
you have to use semaphores.

® Semaphores only work if you use them perfectly.

® Forgetting to take the semaphore: Semaphores only work if
every task that accesses the shared data, for read or for write,
uses the semaphore.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Semaphore problem cause #2:
Forgetting to release the semaphore

® Forgetting to release the semaphore: If any task fails to release
the semaphore, then every other task that ever uses the
semaphore will sooner or later be blocked as they wait to take
that semaphore.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Semaphore problem cause #3:Taking
the wrong semaphore

® Taking the wrong semaphore: If you are using multiple
semaphores, then taking the wrong one is as bad as forgetting
to take one.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Semaphore problem cause #4: Holding
a semaphore for too long

® Holding a semaphore for too long:Whenever one task takes a
semaphore, every other task that subsequently wants that
semaphore has to wait until the semaphore is released.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Consequence #1: Priority inversion

Task A gets a
message in 1ts queue

Lets say consider a system and unblocks; RTOS
. . switches to Task A.
with 3 different tasks: -

Task B gets a Task A tries to take
message in its queue the semaphore that
and unblocks; RTOS Task C already has taken.

[Tas (C (IOW Pr'|or'|t)l) switches to Task B.
. . . Task B goes on running
® TaS (B (m ed ium P 'lo rlt)’) Task C takes a and running and running,

semaphore that it never giving Task C a

o TaS (A (h | gh pl"IOI"It)’) shares with Task A. chance to release the

semaphore. Task A is blocked

Task A

According to our RTOS
paradigm, when the system
demands a high priority task
(TaskA) to be executes, it
must be done immediately! B The cask the microprocessor is executing

Task B

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Consequence #1: Priority inversion

Task A gets a
message in 1ts queue
and unblocks; RTOS
switches to Task A.

Task B gets a Task A tries to take
message in its queue the semaphore that

A N aSt)/ sém ap h ore and unblocks; RTOS Task C already has taken.

switches to Task B.

problem can arise if the Task B goes on running

Task C takes a and running and running,

RTOS switches from a low-| semaphore thatic never giving Task C a
shares with Task A. chance to release the

I I semaphore. Task A is blocked
priority task (Task C) to a . p
medium-priority task (Task
B) after Task C has taken a Task B

semaphore.

.| The task the microprocessor is executing

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Consequence #1: Priority inversion

Task A gets a
message in 1its queue
and unblocks; RTOS
switches to Task A.

Task B gets a Task A tries to take A high-priority task (Task

message in its queue the semaphore that

and unblocks; RTOS Task C already has taken. A) th at Wants th e
switches to Task B.
Task B goes on running Semaphore then has to

Task C takes a and running and running,

semaphore that it never giving Task C a : N :

shares with Task A. chanceg to rglease the Walt untll TaSk B glves UP
semaphore Task Ais blocked | tha microprocessor: Task C
can't release the

i semaphore until it gets the

microprocessor back.

Task A

.| The task the microprocessor is executing

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Consequence #1: Priority inversion

Task A gets a
message in 1ts queue

No matter how carefully a1 intlock RIS

switches to Task A.
you code Task C, Task B T

Task B gets a Task A tries to take
can P revent TaSk C from message in its queue the semaphore that

. and unblocks; RTOS Task C already has taken.
releasing the semaphore switches to Task B,
Task B goes on running

and can thel‘e by hOld U P Task C takes a and running and running,

semaphore that it never giving Task C a

TaS k A |n deﬁ N Itel)’. shares with Task A. chance to release the
semaphore. Task A is blocked

Task A

Task B

This is problematic! TaskA,
which is a high priority
task should have been
executed immediately! FEFA] The task the microprocessor is executing

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Consequence #2: Deadly embrace

int a;
int b;
static 0S EVENT *semaphoreA;
static 0S EVENT *semaphoreB;

void vTaskl (void) * |n this code Taskl and Task?2

{ operate on variables a and b
OSSemPend (&semaphoreA, SUSPEND) ;

OSSempPend (&semaphoreB, SUSPEND) ; after getting permission to use
a = b; .
0SSemPost (ssemaphoreB) ; them by getting semaphores

OSSemPost (&semaphoreAh); Semaphor’eA and
SemaphoreB.

}

vold vTask? (void)

{
OSSemPend (&semaphoreB, SUSPEND) ;
OSSemPend (&semaphoreA, SUSPEND) ; ¢ DO)’OU SE€c the PFObIem?
b = a;
OSSemPost (&semaphorelh) ;
OSSemPost (&semaphoreB) ;

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Consequence #2: Deadly embrace

| o[f vTaskl calls gets SemaphoreA,
int ay;

int b; but before it can call OSSemPend
static 0S EVENT *semaphoreA;
static 0S EVENT *semaphoreB; to get SemaPhOreB, the RTOS

stops it and runs vTask2.

volid vTaskl (void)

{
OSSemPend (&semaphoreA, SUSPEND) ;
OSSemPend (&semaphoreB, SUSPEND) ; * The task vTask2 now calls
a = b;
OSSemPost (&semaphoreB) ; OssemPend and gets

OSSemPost (&semaphored) ;
} SemaphoreB.

vold vTask? (void)

{ * When vTlask2 then calls

OSSemPend (&semaphoreB, SUSPEND) ;
OSSemPend (&semaphoreA, SUSPEND) ; OSSemPend to get SemaPhOFEA,

b = a; .
0SSemPost (&semaphored) ; it blocks, because another task
OSSemPost (&semaphoreB) ; (VTaSk) alread)’ haS that

S€maphore.

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Consequence #2: Deadly embrace

int a;
int b;
static 0S EVENT *semaphoreA;
static 0S EVENT *semaphoreB;

volid vTaskl (void)

{ e The RTOS will now switch back

OSSemPend (&semaphoreA, SUSPEND) ; .

0SSemPend (&semaphoreB, SUSPEND) ; to vIaskl, which now calls

a = b;

0SSemPost (ssemaphoreB) ; OSSemPend to get SemaphoreB.

OSSemPost (&semaphored) ;
}

| | * Since vTask2 has SemaphoreB,
void vTask2 (void)

{ however, vTaskl now also blocks.
OSSemPend (&semaphoreB, SUSPEND) ;

OSSemPend (&semaphoreA, SUSPEND) ;
b = a;

OSSemPost (&semaphorelh) ;
OSSemPost (&semaphoreB) ;

CPE 355 - Real Time Embedded Kernels - Spring ‘12 WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

Consequence #2: Deadly embrace

int a;
int b;
static 0S EVENT *semaphoreA;
static 0S EVENT *semaphoreB;

void vTaskl (void)

{
OSSemPend (&semaphoreA, SUSPEND) ;
OSSemPend (&semaphoreB, SUSPEND) ;
a = by
OSSemPost (&semaphoreB) ;
OSSemPost (&semaphorelh) ;

}

volid vTask? (void)

{
OSSemPend (&semaphoreB, SUSPEND) ;
OSSemPend (&semaphoreA, SUSPEND) ;
b = a;
OSSemPost (&semaphorelh) ;
OSSemPost (&semaphoreB) ;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

* Deadly-embrace problems
would be easy to find and fix if
they always looked as “clean” as
this code.

* However, deadly embrace is just
as deadly if vTaskl takes the first
semaphore and then calls a
subroutine that later takes a
second one while vTask2 takes
the second semaphore and then
calls a subroutine that takes the
first.

* In this case the problem will not
be so obvious.

WESTERN NEW ENGLAND

