
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Message queues, mailboxes and
pipes

Reference: Simon Chapter 7

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Other common features offered by
commercial RTOS

There are other features commonly offered by commercial
RTOSs:

• Intertask communication

• Timer services

• Memory management

• Events

• Interaction between interrupt routines and RTOSs.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Message queues, mailboxes, and pipes

Tasks must be able to communicate with one another to
coordinate their activities or to share data.

For example the tank monitoring system.

• Tasks can use shared data and semaphores to allow task-
communication.

• There are several other methods that most RTOSs offer:
queues, mailboxes, and pipes.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simplified queue example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Two high priority tasks

• Suppose we have Task1 and Task2, each has a number of high-
priority, urgent things to do.

• Suppose these two tasks discover error conditions that must be
reported on a network, a time-consuming process.

• In order not to delay Task1 and Task2, it makes sense to have a
separate task, ErrorsTask, that is responsible for reporting the
error conditions.

• Whenever Task1 or Task2 discovers an error, it reports error to
ErrorsTask and goes on about its own business.

• The error reporting process undertaken by ErrorsTask does not
delay the other tasks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simple use of a queue

//RTOS queue function prototypes
void AddToQueue (int iData);
void ReadFromQueue (int *p,iData);

//global variables
static int cErrors;

void Task1 (void)
{
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void Task2 (void)
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void vLogError (int iErrorType)
{
 AddToQueue (iErrorType);
}

//This task is running on background
void ErrorsTask (void)
{
 int iErrorType;
 while (FOREVER)
 {
 ReadFromQueue (&iErrorType);
 ++cErrors;

 !!Send cErrors out on network
 !!Send iErrorType out on network
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simple use of a queue

//RTOS queue function prototypes
void AddToQueue (int iData);
void ReadFromQueue (int *p,iData);

//global variables
static int cErrors;

void Task1 (void)
{
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void Task2 (void)
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void vLogError (int iErrorType)
{
 AddToQueue (iErrorType);
}

//This task is running on background
void ErrorsTask (void)
{
 int iErrorType;
 while (FOREVER)
 {
 ReadFromQueue (&iErrorType);
 ++cErrors;

 !!Send cErrors out on network
 !!Send iErrorType out on network
 }
}

Task1 and Task2, each
has a number of high-
priority, urgent things to
do.

When Task1 or Task2
needs to log errors, it
calls vLogError.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simple use of a queue

//RTOS queue function prototypes
void AddToQueue (int iData);
void ReadFromQueue (int *p,iData);

//global variables
static int cErrors;

void Task1 (void)
{
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void Task2 (void)
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void vLogError (int iErrorType)
{
 AddToQueue (iErrorType);
}

//This task is running on background
void ErrorsTask (void)
{
 int iErrorType;
 while (FOREVER)
 {
 ReadFromQueue (&iErrorType);
 ++cErrors;

 !!Send cErrors out on network
 !!Send iErrorType out on network
 }
}

The vLogError
function puts the error
on a queue of errors for
ErrorsTask to deal with.

AddToQueue function
adds the value of the
integer parameter it is
passed to a queue of
integer values the RTOS
maintains internally.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simple use of a queue

//RTOS queue function prototypes
void AddToQueue (int iData);
void ReadFromQueue (int *p,iData);

//global variables
static int cErrors;

void Task1 (void)
{
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void Task2 (void)
 (...)
 if (!! problem arises)
 vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void vLogError (int iErrorType)
{
 AddToQueue (iErrorType);
}

//This task is running on background
void ErrorsTask (void)
{
 int iErrorType;
 while (FOREVER)
 {
 ReadFromQueue (&iErrorType);
 ++cErrors;

 !!Send cErrors out on network
 !!Send iErrorType out on network
 }
}

ReadFromQueue
function reads the value
at the head of the queue
and returns it to the
caller.

If the queue is empty,
ReadFromQueue
blocks the calling task.

The RTOS guarantees
that both of these
functions are reentrant.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Some ugly details

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Some ugly details

• Most RTOSs require that you initialize your queues
before you use them, by calling a function provided for this
purpose.

•You can have as many queues as you want, you pass an
additional parameter to every queue function: the identity of
the queue.

•If your code tries to write to a queue when the queue is
full, the RTOS either returns an error or it blocks the task
until some other task reads data from the queue and thereby
creates some space

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

More ugly details

•Many RTOSs include a function that will read from a queue if
there is any data and will return an error code if not.

•The amount of data that the RTOS lets you write to the queue
in one call may not be exactly the amount that you want to
write.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Complete queue example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

//RTOS queue function prototypes
0S_EVENT *OSQCreate (void **ppStart, BYTE bySize);
unsigned char OSQPost (0S_EVENT *pOse, void *pvMsg);
void *OSQPend(0S_EVENT *pOse, WORD wTimeout, BYTE *pByErr);

#define WAIT__FOREVER 0
//Our message queue
static OS_EVENT *pOseQueue;
//The data space for our queue (managed by the RTOS)
#define SIZEOF_QUEUE 25
void *apvQueue[SIZEOF_QUEUE];

void main (void)
{
 (...)
 //Queue is initialized before the tasks
 pOseQueue = OSQCreate (apvQueue, SIZEOF_QUEUE);
 (...)
 !! Start Task1 then Start Task2
 (...)
}

void Task1 (void)
{
 (...)
 if (!! problem arises) vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void Task2 (void)
 (...)
 if (!! problem arises) vLogError (ERROR_TYPE_X);
 !! Do other things
 (...)
}

void vLogError (int iErrorType)
{
 //Return code from writing to queue
 BYTE byReturn;
 //Write to the queue.
 //Cast the error type as a void pointer
 byReturn=OSQPost(pOseQueue,(void *) iErrorType);
 if (byReturn != OS_N0_ERR)
 !! Handle the situation when queue is full
}

static int cErrors;
void ErrorsTask (void)
{
 int iErrorType;
 BYTE byErr;
 while (FOREVER)
 {
 //Cast the value received from the queue
 //back to an int. Since that there is no

 //possible error from this, so we ignore byErr.
 iErrorType=
(int)OSQPend(pOseQueue,WAIT_FOREVER,&byErr);
 ++cErrors;
 !! Send cErrors and iErrorType out on network
 }
}

Complete queue example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pointers and queues

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

//Queue function prototypes
OS_EVENT *OSQCreate(void **ppStart, BYTE bySize);
Unsigned char OSQPost(0S_EVENT *pOse,void *pvMsg);
void *OSQPend(0S_EVENT *pOse,WORD wTimeout,BYTE *pByErr);
#define WAIT_FOREVER 0
Static 0S_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)
{
 int *pTemperatures;
 while (TRUE)
 {
 !!Wait until the time to read the next temperature
 //Get a new buffer for the new set of temperatures.
 pTemperatures=(int *) malloc (2*sizeof*pTemperatures);

 pTemperatures[0] = !!read in value from hardware;
 pTemperatures[1] = !!Read in value from hardware;

 //Add a pointer to the new temperatures to the queue
 OSQPost (pOseQueueTemp, (void *) pTemperatures);
 }
}
void vMainTask (void)
{
 int *pTemperatures;
 BYTE byErr;
 while (TRUE)
 {
 pTemperatures = (int *) OSQPend (pOseQueueTemp, WAIT_FOREVER, &byErr);
 if (pTemperatures[0] != pTernperatures[1])
 !! Set off howling alarm;
 free (pTemperatures);
 }
}

Pointers and
queues example

• A void pointer
(pointer that points to
a raw memory
location) is written to
the queue on each call

• One task can pass any
amount of data to
another task by
putting the data into a
buffer and then writing
a pointer to the buffer
onto the queue.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

//Queue function prototypes
OS_EVENT *OSQCreate(void **ppStart, BYTE bySize);
Unsigned char OSQPost(0S_EVENT *pOse,void *pvMsg);
void *OSQPend(0S_EVENT *pOse,WORD wTimeout,BYTE *pByErr);
#define WAIT_FOREVER 0
Static 0S_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)
{
 int *pTemperatures;
 while (TRUE)
 {
 !!Wait until the time to read the next temperature
 //Get a new buffer for the new set of temperatures.
 pTemperatures=(int *) malloc (2*sizeof*pTemperatures);

 pTemperatures[0] = !!read in value from hardware;
 pTemperatures[1] = !!Read in value from hardware;

 //Add a pointer to the new temperatures to the queue
 OSQPost (pOseQueueTemp, (void *) pTemperatures);
 }
}
void vMainTask (void)
{
 int *pTemperatures;
 BYTE byErr;
 while (TRUE)
 {
 pTemperatures = (int *) OSQPend (pOseQueueTemp, WAIT_FOREVER, &byErr);
 if (pTemperatures[0] != pTernperatures[1])
 !! Set off howling alarm;
 free (pTemperatures);
 }
}

Pointers and
queues example

•This task calls the C
library malloc function
to allocate a new data
buffer for each pair of
temperatures and
writes a pointer to
that buffer into the
queue.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

//Queue function prototypes
OS_EVENT *OSQCreate(void **ppStart, BYTE bySize);
Unsigned char OSQPost(0S_EVENT *pOse,void *pvMsg);
void *OSQPend(0S_EVENT *pOse,WORD wTimeout,BYTE *pByErr);
#define WAIT_FOREVER 0
Static 0S_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)
{
 int *pTemperatures;
 while (TRUE)
 {
 !!Wait until the time to read the next temperature
 //Get a new buffer for the new set of temperatures.
 pTemperatures=(int *) malloc (2*sizeof*pTemperatures);

 pTemperatures[0] = !!read in value from hardware;
 pTemperatures[1] = !!Read in value from hardware;

 //Add a pointer to the new temperatures to the queue
 OSQPost (pOseQueueTemp, (void *) pTemperatures);
 }
}
void vMainTask (void)
{
 int *pTemperatures;
 BYTE byErr;
 while (TRUE)
 {
 pTemperatures = (int *) OSQPend (pOseQueueTemp, WAIT_FOREVER, &byErr);
 if (pTemperatures[0] != pTernperatures[1])
 !! Set off howling alarm;
 free (pTemperatures);
 }
}

Pointers and
queues example

•vMainTask
subsequently reads the
pointer to the buffer
from the queue,
compares the
temperatures, and
frees the buffer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Mailboxes

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Mailboxes introduction

•Mailboxes are like queues.

•The typical RTOS has functions to create, to write to, and to
read from mailboxes, and functions to check whether the
mailbox contains any messages and to destroy the
mailbox if it is no longer needed.

•Some RTOSs allow a certain number of messages in each
mailbox (chosen during compile time), others allow only one
message in a mailbox at a time. Once one message is written
to a mailbox under this last systems, the mailbox is full; no
other message can be written to the mailbox until the first one
is read.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Prioritize mailbox messages

• In certain RTOS, you can prioritize mailbox messages.

• For example, in the MultiTask! RTOS each message is a void pointer.
You must create all of the mailboxes you need when you configure the
system, after which you can use these three functions:

int sndmsg (unsigned int uMbId, void *p_vMsg, unsigned int uPriority);

void *rcvmsg (unsigned int uMbld, unsigned int uTimeout);

void *chkmsg (unsigned int uMbld);

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

sndmsg function

•the uMbId parameter identifies the mailbox on which to operate.

•The sndmsg function adds p_vMsg into the queue of messages held
by the uMbld mailbox with the priority indicated by uPriority

•It returns an error if uMbld is invalid or if too many messages are
already pending in mailboxes.

int sndmsg (unsigned int uMbId, void *p_vMsg, unsigned int uPriority);

void *rcvmsg (unsigned int uMbld, unsigned int uTimeout);

void *chkmsg (unsigned int uMbld);

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

rcvmsg and chkmsg functions

•The rcvmsg function returns the highest-priority message from the
specified mailbox; it blocks the task that called it if the mailbox is empty.

•The task can use the uTimeout parameter to limit how long it will
wait if there are no messages

•The chkmsg function returns the first message in the mailbox; it
returns a NULL immediately if the mailbox is empty.

int sndmsg (unsigned int uMbId, void *p_vMsg, unsigned int uPriority);

void *rcvmsg (unsigned int uMbld, unsigned int uTimeout);

void *chkmsg (unsigned int uMbld);

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pipes

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Introduction to pipes

•Pipes are also like queues.

•The RTOS can create, write , read, and so on.

•Pipes in some RTOSs are entirely byte-oriented. For example:

•Task A writes 11 bytes to the pipe and then Task B
writes 19 bytes to the pipe

•If Task C reads 14 bytes from the pipe, it will get the 11
bytes that Task A wrote plus the first 3 bytes that Task B wrote.

•The other 16 bytes that task B wrote remain in the pipe for
whatever task reads from it next.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How are pipes implemented?

•Some RTOSs use the standard C library functions fread and
fwrite to read from and write to pipes.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Which one to use?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

So... which one to use?

• Since queues, mailboxes, and pipes vary so much from one
RTOS to another, it is hard to give much universal guidance
about which to use in any given situation.

•When RTOS vendors design these features, they must make
the usual programming trade-offs among flexibility, speed,
memory space, the length of time that interrupts must be
disabled within the RTOS functions, and so on.

•Most RTOS vendors describe these characteristics in their
documentation; read it to determine which of the
communications mechanisms best meets your requirements.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pitfalls

• Pitfall #1: Queues, mailboxes, and pipes make it easy to share
data among tasks, but they also make it easy to insert bugs.

• Pitfall #2: Most RTOSs do not restrict which tasks can read
from or write to any given queue, mailbox, or pipe. Therefore,
you must ensure that tasks use the correct one each time.

• Pitfall #3: RTOS cannot ensure that data written
onto a queue, mailbox, or pipe will be properly
interpreted by the task that reads it.

‣ For example, if one task writes an integer onto the queue
and another task reads it and then treats it as a pointer,
your product will not work.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

RTOS cannot ensure that data written
will be properly interpreted...

//Compiler will find the bug

//This function takes a pointer parameter
void vFunc (char *p_ch);
void main (void)
{
 int i ;
 (...)
 //Call it with an int..
 //and get a compiler error
 vFunc (i);
 (...)
}

//compiler will NOT find the bug

static OS_EVENT *pOseQueue;

void TaskA (void)
{
 int i;
 (...)
 //Put an integer on the queue.
 OSQPost (pOseQueue,(void *) i);
 (...)
}

void TaskB (void)
{
 char *p_ch;
 BYTE byErr;
 (...)
 //Reads from the queue and
 //expects a character pointer.
 p_ch=(char *) OSQPend (pOseQueue,
FOREVER, byErr);
 (...)
}

Code #1 Code #2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

More pitfalls

•Pitfall #4: Running out of space in queues, mailboxes, or pipes is
usually a disaster for embedded software.

‣When one task needs to pass data to another, it is usually
not optional. Often, the only solution is to make your
queues, mailboxes, and pipes large enough in the first place.

•Pitfall #5: Passing pointers from one task to another through a
queue, mailbox, or pipe is one of several ways to create shared
data inadvertently.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Pitfall #5 example: Shared data
problem from passing pointers

between tasks

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

//Queue function prototypes
OS_EVENT *OSQCreate (void **ppStart, BYTE bySize);
unsigned char OSQPost (0S_EVENT *pOse, void *pvMsg);
void *0SQPend (0S_EVENT *pOse, WORD wTimeout,BYTE *pByErr);
#define WAIT_FOREVER 0
static OS_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)
{
 int iTemperatures[2] ;
 while (TRUE)
 {
 !!Wait until it’s time to read the next temperature
 iTemperatures[0] = !!read in value from hardware;
 iTemperatures[1] = !!read in value from hardware;
 //Add to the queue a pointer to the temperatures
 //we just read
 OSQPost (pOseQueueTemp, (void *) iTemperatures);
 }
}
void vMainTask (void)
{
 int *pTemperatures;
 BYTE byErr;
 while (TRUE)
 {
 pTemperatures = (int *)OSQPend (pOseQueueTemp,
WAIT_FOREVER, &byErr);
 if (pTemperatures[0] ! = pTemperatures[1])
 !! Set off howling alarm;
 }
}

When the main task gets a
value for pTemperatures
from the queue,
pTemperatures will point
to the iTemperatures array
in vReadTemperaturesTask.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

//Queue function prototypes
OS_EVENT *OSQCreate (void **ppStart, BYTE bySize);
unsigned char OSQPost (0S_EVENT *pOse, void *pvMsg);
void *0SQPend (0S_EVENT *pOse, WORD wTimeout,BYTE *pByErr);
#define WAIT_FOREVER 0
static OS_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)
{
 int iTemperatures[2] ;
 while (TRUE)
 {
 !!Wait until it’s time to read the next temperature
 iTemperatures[0] = !!read in value from hardware;
 iTemperatures[1] = !!read in value from hardware;
 //Add to the queue a pointer to the temperatures
 //we just read
 OSQPost (pOseQueueTemp, (void *) iTemperatures);
 }
}
void vMainTask (void)
{
 int *pTemperatures;
 BYTE byErr;
 while (TRUE)
 {
 pTemperatures = (int *)OSQPend (pOseQueueTemp,
WAIT_FOREVER, &byErr);
 if (pTemperatures[0] ! = pTemperatures[1])
 !! Set off howling alarm;
 }
}

If the RTOS switches from
vMainTask to
vReadTemperaturesTask
while vMainTask was
comparing
iTemperatures[0] to
iTemperatures[1], and if
vReadTemperaturesTask
then changes the values in
iTemperatures, you will
have the shared-data bugs.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

//Queue function prototypes
OS_EVENT *OSQCreate (void **ppStart, BYTE bySize);
unsigned char OSQPost (0S_EVENT *pOse, void *pvMsg);
void *0SQPend (0S_EVENT *pOse, WORD wTimeout,BYTE *pByErr);
#define WAIT_FOREVER 0
static OS_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)
{
 int iTemperatures[2] ;
 while (TRUE)
 {
 !!Wait until it’s time to read the next temperature
 iTemperatures[0] = !!read in value from hardware;
 iTemperatures[1] = !!read in value from hardware;
 //Add to the queue a pointer to the temperatures
 //we just read
 OSQPost (pOseQueueTemp, (void *) iTemperatures);
 }
}
void vMainTask (void)
{
 int *pTemperatures;
 BYTE byErr;
 while (TRUE)
 {
 pTemperatures = (int *)OSQPend (pOseQueueTemp,
WAIT_FOREVER, &byErr);
 if (pTemperatures[0] ! = pTemperatures[1])
 !! Set off howling alarm;
 }
}

The similar code on slide
15 did not have this
problem, because
vMainTask and
vReadTemperaturesTask
never use the same
memory location at the
same time.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Timer functions

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Most embedded systems must keep
track of the passage of time

For example:

‣ To extend its battery life, a cordless bar-code scanner must
turn itself off after a certain number of seconds.

‣ Systems with network connections must wait for
acknowledgements to data that they have sent and
retransmit the data if an acknowledgement doesn't show up
on time.

‣ Manufacturing systems must wait for robot arms to move
or for motors to come up to speed.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Delay is a task blocking operation

•Most RTOSs offer a function that delays a task for a period of
time

•That is... blocks the task until the period of time expires.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Telephone call example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

vMakePhoneCallTask

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

In the US each of the
tones that represents a
digit must sound for one-
tenth of a second, and
there must be one-tenth-
second silences between
the tones.

vMakePhoneCallTask
receives a phone number
from an RTOS message
queue

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

taskDelay

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

The function
msgQreceive copies the
phone number from the
queue into
a_chPhoneNumber.

While-loop calls
taskDelay first to create
a silence and then to
create a tone of
appropriate length for
each digit in the phone
number.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

msgQreceive and taskDelay are
VxWorks functions

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

The functions
vDialingToneOn and
vDialingToneOff turn the
tone generator on and off.

The msgQreceive and
taskDelay functions in
this code are from
VxWorks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

taskDelay function takes a number of
milliseconds as its parameter?

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

No. The taskDelay function
in VxWorks (like most
RTOSs), takes the number
of system ticks as its
parameter.

The length of time
represented by each
system tick is something
you can usually control
when you set up the
system.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How accurate are the delays produced
by the taskDelay function?

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

They are accurate to the
nearest, system tick.

The RTOS works by
setting up a single
hardware timer to
interrupt periodically, say,
every millisecond, and
bases all timings on that
interrupt.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Heartbeat timer

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

This timer is often called
the heartbeat timer.

For example, if one of your
tasks passes 3 to
taskDelay, that task will
block until the heartbeat
timer interrupts three
times.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Timer function accuracy

•The first timer interrupt may come almost immediately after the
call to taskDelay or it may come after just under one tick time or
after any amount of time between those two extremes.

•The task will therefore be blocked for a period of time that is
between just a tiny more than two system ticks and just a tiny less
than three system ticks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Setting up timer hardware

•Question: How does the RTOS know how to set up the
timer hardware on my particular hardware?

•It is common for microprocessors to have timers.

•If you are using nonstandard timer hardware, then you may
have to write your own timer setup software and timer
interrupt routine.

•The RTOS will have an entry point for your interrupt routine
to call every time the timer expires.

•Many RTOS vendors provide board support packages , which
contain driver software for common hardware components.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a "normal" length for the
system tick?

•There really isn't one.

•The advantage of a short system tick is that you get
accurate timings.

•The disadvantage is that the microprocessor must execute
the timer interrupt routine frequently.

•Since the hardware timer that controls the system tick usually
runs all the time, whether or not any task has requested timing
services, a short system tick can decrease system throughput
quite considerably by increasing the amount of microprocessor
time spent in the timer interrupt routine.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What if my system needs extremely
accurate timing?

•One choice is to make the system tick short enough that
RTOS timings fit your definition of "extremely accurate."

•Other choice is to use a separate hardware timer for those
timings that must be extremely accurate.

•It is not uncommon to design an embedded system that uses
dedicated timers for a few accurate timings and uses the RTOS
functions for other timings that need not be so accurate.

•The advantage of the RTOS timing functions is that one
hardware timer times many number of operations
simultaneously.

