
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

RTOS Timer functions
Reference: Simon Chapter 7

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Most embedded systems must keep
track of the passage of time

For example:

‣ To extend its battery life, a cordless bar-code scanner must
turn itself off after a certain number of seconds.

‣ Systems with network connections must wait for
acknowledgements to data that they have sent and
retransmit the data if an acknowledgement doesn't show up
on time.

‣ Manufacturing systems must wait for robot arms to move
or for motors to come up to speed.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Delay is a task blocking operation

•Most RTOSs offer a function that delays a task for a period of
time.

•That is... blocks the task until the period of time expires.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Telephone call example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

vMakePhoneCallTask

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

In the US each of the
tones that represents a
digit must sound for one-
tenth of a second, and
there must be one-tenth-
second silences between
the tones.

vMakePhoneCallTask
receives a phone number
from an RTOS message
queue

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

taskDelay

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

The function
msgQreceive copies the
phone number from the
queue into
a_chPhoneNumber.

While-loop calls
taskDelay first to create
a silence and then to
create a tone of
appropriate length for
each digit in the phone
number.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

msgQreceive and taskDelay are
VxWorks functions

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

The functions
vDialingToneOn and
vDialingToneOff turn the
tone generator on and off.

The msgQreceive and
taskDelay functions in
this code are from
VxWorks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

taskDelay function takes a number of
milliseconds as its parameter?

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

No. The taskDelay function
in VxWorks (like most
RTOSs), takes the number
of system ticks as its
parameter.

The length of time
represented by each
system tick is something
you can usually control
when you set up the
system.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How accurate are the delays produced
by the taskDelay function?

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

They are accurate to the
nearest, system tick.

The RTOS works by
setting up a single
hardware timer to
interrupt periodically, say,
every millisecond, and
bases all timings on that
interrupt.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Heartbeat timer

//Message queue for phone numbers to dial.
extern MSG_Q_ID queuePhoneCall;
void vMakePhoneCallTask (void)
{
 #define MAX_PHONE_NUMBER 11
 char a_chPhoneNumber[MAX_PHONE_NUMBER];
 //Buffer for null-terminated ASCII number
 char *p_chPhoneNumber;
 //Pointer into a_chPhoneNumber
 while (TRUE){
 msgQreceive (queuePhoneCall, a_chPhoneNumber,
MAX_PHONE_NUMBER, WAIT_FOREVER);
 //Dial each of the digits
 p_chPhoneNumber = a_chPhoneNumber;
 while (*p_chPhoneNumber)
 {
 taskDelay(100); //l/10th of a second silence
 vDialingToneOn(*p_chPhoneNumber -'0');
 taskDelay(100); //l/10th of a second with tone
 vDialingToneOff ();
 //Go to the next digit in the phone number
 ++p_chPhoneNumber;
 }
 (...)
 }
}

This timer is often called
the heartbeat timer.

For example, if one of your
tasks passes 3 to
taskDelay, that task will
block until the heartbeat
timer interrupts three
times.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Timer function accuracy

•The first timer interrupt may come almost immediately after the
call to taskDelay or it may come after just under one tick time or
after any amount of time between those two extremes.

•The task will therefore be blocked for a period of time that is
between just a tiny more than two system ticks and just a tiny less
than three system ticks.

Tick #1

Tick #2

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Setting up timer hardware

•Question: How does the RTOS know how to set up the
timer hardware on my particular hardware?

•It is common for microprocessors to have timers.

•If you are using nonstandard timer hardware, then you may
have to write your own timer setup software and timer
interrupt routine.

•The RTOS will have an entry point for your interrupt routine
to call every time the timer expires.

•Many RTOS vendors provide board support packages , which
contain driver software for common hardware components.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is a "normal" length for the
system tick?

• There really isn't one.

• The advantage of a short system tick is that you get
accurate timings.

• The disadvantage is that the microprocessor must execute
the timer interrupt routine frequently.

• Since the hardware timer that controls the system tick usually
runs all the time, whether or not any task has requested timing
services, a short system tick can decrease system throughput
quite considerably by increasing the amount of microprocessor
time spent in the timer interrupt routine.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What if my system needs extremely
accurate timing?

•One choice is to make the system tick short enough that
RTOS timings fit your definition of "extremely accurate."

•Other choice is to use a separate hardware timer for those
timings that must be extremely accurate.

•It is not uncommon to design an embedded system that uses
dedicated timers for a few accurate timings and uses the RTOS
functions for other timings that need not be so accurate.

•The advantage of the RTOS timing functions is that one
hardware timer times many number of operations
simultaneously.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Most RTOSs offer other timing
services based on the system tick

•Example #1: Limit how long a task will wait for a message
from a queue or a mailbox.

•Example #2: Define how long a task will wait for a
semaphore

‣If you set a time limit when your high-priority task attempts
to get a semaphore and if that time limit expires, then your
task does not have the semaphore and cannot access the
shared data.

