
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Events and memory management
Reference: Simon Chapter 7

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is an event?

An event is:

• a boolean flag that tasks can be set or reset.

and

• a boolean flag that other tasks can wait for.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Cordless bar-code scanner example

• When the user pulls the trigger, the task
that starts scanning and recognizes the
bar-code must start.

• Events make this easy.

• The interrupt routine that runs when the
user pulls the trigger sets an event for
which the scanning task is waiting.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Some standard features of events

• More than one task can be blocked waiting for
the same event.

• The RTOS will unblock all of them (and run
them in priority order) when the event occurs.

• RTOSs typically form groups of events, and
tasks can wait for any subset of events within
the group.

‣Example: Playstation 3 must turn on when you
press the console button or when you press
the controller.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What to do after an event?

• What to do with the tasks that have been unblocked?

• What will happen to the event boolean flag?

• ... Both Depends on the RTOS choice.

‣Some RTOSs reset events automatically.

‣Other RTOs require that your task software do this.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Implementation example of events

• The next slides will describe how events can be implemented on
the AMX RTOS.

• Their website is: http://www.kadak.com/rtos/rtos.htm

http://www.kadak.com/rtos/rtos.htm
http://www.kadak.com/rtos/rtos.htm

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

// Handle for the trigger group of events.
AMXID amxidTrigger;
//Constants for use in the group.
#define TRIGGER_MASK 0x0001
#define TRIGGER_SET 0x0001
#define TRIGGER_RESET 0x0000
#define KEY_MASK 0x0002
#define KEY_SET 0x0002
#define KEY_RESET 0x0000
void main (void)
{
 (...)
 //Create an event group with
 //the trigger and keyboard events reset
 ajevcre (&amxidTrigger, 0, "EVTR");
 (...)
}

void interrupt vTriggerlSR (void)
{
 //The user pulled the trigger.
 //Set the event.
 ajevsig (amxidTrigger, TRIGGER_MASK,
 TRIGGER_SET);
}

void interrupt vKeylSR (void)
{
 //The user pressed a key. Set the event.
 ajevsig (amxidTrigger, KEY_MASK, KEY_SET);
 !!Figure out which key the user pressed
 !!store that value
}

void vScanTask (void)
{
 (...)
 while (TRUE)
 {
 // Wait for the user to pull the trigger.
 ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET,
 WAIT_FOR_ANY, WAIT_FOREVER);
 // Reset the trigger event.
 ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET);
 !!Turn on the scanner hardware and look for a scan.
 (...)
 !!When the scan has been found,
 !!turn off the scanner.
 }
 }

void vRadioTask (void)
{
 (...)
 while (TRUE)
 {
 //Wait for the user to pull the trigger or
 //press a key.
 ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK,
 TRIGGER_SET | KEY_SET, WAIT_FOR_ANY,
 WAIT_FOREVER);

 // Reset the key event. The trigger event will
 //be reset by the ScanTask/
 ajevsig (amxidTrigger, KEY_MASK, KEY_RESET);
 !!Turn on the radio.
 (...)
 !!When data has been sent, turn off the radio.
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

// Handle for the trigger group of events.
AMXID amxidTrigger;
//Constants for use in the group.
#define TRIGGER_MASK 0x0001
#define TRIGGER_SET 0x0001
#define TRIGGER_RESET 0x0000
#define KEY_MASK 0x0002
#define KEY_SET 0x0002
#define KEY_RESET 0x0000
void main (void)
{
 (...)
 //Create an event group with
 //the trigger and keyboard events reset
 ajevcre (&amxidTrigger, 0, "EVTR");
 (...)
}

void interrupt vTriggerlSR (void)
{
 //The user pulled the trigger.
 //Set the event.
 ajevsig (amxidTrigger, TRIGGER_MASK,
 TRIGGER_SET);
}

void interrupt vKeylSR (void)
{
 //The user pressed a key. Set the event.
 ajevsig (amxidTrigger, KEY_MASK, KEY_SET);
 !!Figure out which key the user pressed
 !!store that value
}

void vScanTask (void)
{
 (...)
 while (TRUE)
 {
 // Wait for the user to pull the trigger.
 ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET,
 WAIT_FOR_ANY, WAIT_FOREVER);
 // Reset the trigger event.
 ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET);
 !!Turn on the scanner hardware and look for a scan.
 (...)
 !!When the scan has been found,
 !!turn off the scanner.
 }
 }

void vRadioTask (void)
{
 (...)
 while (TRUE)
 {
 //Wait for the user to pull the trigger or
 //press a key.
 ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK,
 TRIGGER_SET | KEY_SET, WAIT_FOR_ANY,
 WAIT_FOREVER);

 // Reset the key event. The trigger event will
 //be reset by the ScanTask/
 ajevsig (amxidTrigger, KEY_MASK, KEY_RESET);
 !!Turn on the radio.
 (...)
 !!When data has been sent, turn off the radio.
 }
}

 ajevcre (AMXID *p_amxidGroup,
unsigned int uValuelnit, char

*p_chTag)

The ajevcre function creates a group
of 16 events, the handle for which is
written into the location pointed to

by p_amxidGroup
(&amxidTrigger).

The initial values of those events, set
and reset, are contained in the

uValuelnit parameter (which is 0).

AMX assigns the group a four-
character name pointed to by

p_chTag (“EVTR”) which allows a
task to find system objects by name.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

// Handle for the trigger group of events.
AMXID amxidTrigger;
//Constants for use in the group.
#define TRIGGER_MASK 0x0001
#define TRIGGER_SET 0x0001
#define TRIGGER_RESET 0x0000
#define KEY_MASK 0x0002
#define KEY_SET 0x0002
#define KEY_RESET 0x0000
void main (void)
{
 (...)
 //Create an event group with
 //the trigger and keyboard events reset
 ajevcre (&amxidTrigger, 0, "EVTR");
 (...)
}

void interrupt vTriggerlSR (void)
{
 //The user pulled the trigger.
 //Set the event.
 ajevsig (amxidTrigger, TRIGGER_MASK,
 TRIGGER_SET);
}

void interrupt vKeylSR (void)
{
 //The user pressed a key. Set the event.
 ajevsig (amxidTrigger, KEY_MASK, KEY_SET);
 !!Figure out which key the user pressed
 !!store that value
}

void vScanTask (void)
{
 (...)
 while (TRUE)
 {
 // Wait for the user to pull the trigger.
 ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET,
 WAIT_FOR_ANY, WAIT_FOREVER);
 // Reset the trigger event.
 ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET);
 !!Turn on the scanner hardware and look for a scan.
 (...)
 !!When the scan has been found,
 !!turn off the scanner.
 }
 }

void vRadioTask (void)
{
 (...)
 while (TRUE)
 {
 //Wait for the user to pull the trigger or
 //press a key.
 ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK,
 TRIGGER_SET | KEY_SET, WAIT_FOR_ANY,
 WAIT_FOREVER);

 // Reset the key event. The trigger event will
 //be reset by the ScanTask/
 ajevsig (amxidTrigger, KEY_MASK, KEY_RESET);
 !!Turn on the radio.
 (...)
 !!When data has been sent, turn off the radio.
 }
}

ajevsig (AMXID amxidGroup,
unsigned int uMask, unsigned int

uValueNew)

The ajevsig function sets and resets
the events in the group indicated by

amxidGroup (amxidTrigger).

The uMask parameter
(TRIGGER_MASK) indicates which

events should be set or reset.

The uValueNew parameter
(TRIGGER_SET) indicates the new
values that the events should have.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

// Handle for the trigger group of events.
AMXID amxidTrigger;
//Constants for use in the group.
#define TRIGGER_MASK 0x0001
#define TRIGGER_SET 0x0001
#define TRIGGER_RESET 0x0000
#define KEY_MASK 0x0002
#define KEY_SET 0x0002
#define KEY_RESET 0x0000
void main (void)
{
 (...)
 //Create an event group with
 //the trigger and keyboard events reset
 ajevcre (&amxidTrigger, 0, "EVTR");
 (...)
}

void interrupt vTriggerlSR (void)
{
 //The user pulled the trigger.
 //Set the event.
 ajevsig (amxidTrigger, TRIGGER_MASK,
 TRIGGER_SET);
}

void interrupt vKeylSR (void)
{
 //The user pressed a key. Set the event.
 ajevsig (amxidTrigger, KEY_MASK, KEY_SET);
 !!Figure out which key the user pressed
 !!store that value
}

void vScanTask (void)
{
 (...)
 while (TRUE)
 {
 // Wait for the user to pull the trigger.
 ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET,
 WAIT_FOR_ANY, WAIT_FOREVER);
 // Reset the trigger event.
 ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET);
 !!Turn on the scanner hardware and look for a scan.
 (...)
 !!When the scan has been found,
 !!turn off the scanner.
 }
 }

void vRadioTask (void)
{
 (...)
 while (TRUE)
 {
 //Wait for the user to pull the trigger or
 //press a key.
 ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK,
 TRIGGER_SET | KEY_SET, WAIT_FOR_ANY,
 WAIT_FOREVER);

 // Reset the key event. The trigger event will
 //be reset by the ScanTask/
 ajevsig (amxidTrigger, KEY_MASK, KEY_RESET);
 !!Turn on the radio.
 (...)
 !!When data has been sent, turn off the radio.
 }
}

 ajevwat(AMXID amxidGroup,
unsigned int uMask, unsigned int

uValue, int iMatch, long
ITimeout)

The ajevwat function causes the
task to wait for one or more

events within the group
indicated by amxidGroup

(amxidTrigger).

The uMask (TRIGGER_MASK)
parameter indicates which

events the task wants to wait
for.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

// Handle for the trigger group of events.
AMXID amxidTrigger;
//Constants for use in the group.
#define TRIGGER_MASK 0x0001
#define TRIGGER_SET 0x0001
#define TRIGGER_RESET 0x0000
#define KEY_MASK 0x0002
#define KEY_SET 0x0002
#define KEY_RESET 0x0000
void main (void)
{
 (...)
 //Create an event group with
 //the trigger and keyboard events reset
 ajevcre (&amxidTrigger, 0, "EVTR");
 (...)
}

void interrupt vTriggerlSR (void)
{
 //The user pulled the trigger.
 //Set the event.
 ajevsig (amxidTrigger, TRIGGER_MASK,
 TRIGGER_SET);
}

void interrupt vKeylSR (void)
{
 //The user pressed a key. Set the event.
 ajevsig (amxidTrigger, KEY_MASK, KEY_SET);
 !!Figure out which key the user pressed
 !!store that value
}

void vScanTask (void)
{
 (...)
 while (TRUE)
 {
 // Wait for the user to pull the trigger.
 ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET,
 WAIT_FOR_ANY, WAIT_FOREVER);
 // Reset the trigger event.
 ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET);
 !!Turn on the scanner hardware and look for a scan.
 (...)
 !!When the scan has been found,
 !!turn off the scanner.
 }
 }

void vRadioTask (void)
{
 (...)
 while (TRUE)
 {
 //Wait for the user to pull the trigger or
 //press a key.
 ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK,
 TRIGGER_SET | KEY_SET, WAIT_FOR_ANY,
 WAIT_FOREVER);

 // Reset the key event. The trigger event will
 //be reset by the ScanTask/
 ajevsig (amxidTrigger, KEY_MASK, KEY_RESET);
 !!Turn on the radio.
 (...)
 !!When data has been sent, turn off the radio.
 }
}

The uValue (TRIGGER_SET)
indicates whether the task

wishes to wait for those events
to be set or reset.

The iMatch (WAIT_FOR_ANY)
parameter indicates whether
the task wishes to unblock

when all of the events specified
by uMask (TRIGGER_MASK)

have reached the values
specified by uValue

(TRIGGER_SET) or when any
one of the events has reached

the specified value.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

// Handle for the trigger group of events.
AMXID amxidTrigger;
//Constants for use in the group.
#define TRIGGER_MASK 0x0001
#define TRIGGER_SET 0x0001
#define TRIGGER_RESET 0x0000
#define KEY_MASK 0x0002
#define KEY_SET 0x0002
#define KEY_RESET 0x0000
void main (void)
{
 (...)
 //Create an event group with
 //the trigger and keyboard events reset
 ajevcre (&amxidTrigger, 0, "EVTR");
 (...)
}

void interrupt vTriggerlSR (void)
{
 //The user pulled the trigger.
 //Set the event.
 ajevsig (amxidTrigger, TRIGGER_MASK,
 TRIGGER_SET);
}

void interrupt vKeylSR (void)
{
 //The user pressed a key. Set the event.
 ajevsig (amxidTrigger, KEY_MASK, KEY_SET);
 !!Figure out which key the user pressed
 !!store that value
}

void vScanTask (void)
{
 (...)
 while (TRUE)
 {
 // Wait for the user to pull the trigger.
 ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET,
 WAIT_FOR_ANY, WAIT_FOREVER);
 // Reset the trigger event.
 ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET);
 !!Turn on the scanner hardware and look for a scan.
 (...)
 !!When the scan has been found,
 !!turn off the scanner.
 }
 }

void vRadioTask (void)
{
 (...)
 while (TRUE)
 {
 //Wait for the user to pull the trigger or
 //press a key.
 ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK,
 TRIGGER_SET | KEY_SET, WAIT_FOR_ANY,
 WAIT_FOREVER);

 // Reset the key event. The trigger event will
 //be reset by the ScanTask/
 ajevsig (amxidTrigger, KEY_MASK, KEY_RESET);
 !!Turn on the radio.
 (...)
 !!When data has been sent, turn off the radio.
 }
}

The lTimeout parameter
(WAIT_FOREVER) indicates
how long the task is willing to

wait for the events.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Comparing the methods for
intertask communication

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Semaphores

• Semaphores are usually the fastest
and simplest methods.

• However, they pass just a 1-bit
message saying that it has been
released.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Events

• Events are a bit more complicated than semaphores.

• They take up slightly more microprocessor time than
semaphores.

• The advantage of events over semaphores is that a task can wait
for any one of several events at the same time.

• On a semaphore, you must wait for a single semaphore to be
released.

• RTOS make it more convenient to use queues than semaphores.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Queues, mailboxes and pipes

Queues, mailboxes and pipes allow you to send information from
one task to another.

Even though the task can wait on only one queue (or mailbox or
pipe) at a time, the fact that you can send data through a queue
makes it even more flexible than events.

Drawbacks:

1. Putting messages into and taking messages out of queues is
more microprocessor-intensive

2. Queues make it easier to insert bugs into your code.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Memory Management

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Memory management

•Most RTOSs have some kind of memory management
subsystem.

•Two standard memory allocation C functions are malloc and
free: real-time systems often avoid these two functions because
they are slow their execution times are unpredictable.

•Most RTOSs offer fast and predictable functions that allocate
and deallocate memory.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

MultiTask! RTOS

•The MultiTask! RTOS is a fairly typical RTOS.

•It set up pools, where each contains some number of memory
buffers.

•In any given pool, all of the buffers are the same size.

•The reqbuf and getbuf functions allocate a memory buffer
from a pool. The relbuf function frees a memory buffer.

•reqbuf & getbuf both returns a pointer to the allocated buffer.

•If no memory buffers are available, getbuf will block the task
that calls it, whereas reqbuf will return a NULL pointer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Where is the memory?

•The MultiTask! system is also typical of many RTOSs in that it
does not know where the memory on your system is.

•Most embedded systems get control of a machine first.

•When it starts, the RTOS has no way of knowing what memory
is free and what memory your application is already using.

•MultiTask! will manage a pool of memory buffers for you, but
you must tell it where the memory is.

•init_mem_pool function: allocates the pool of memory
buffers.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

MultiTask! memory allocation

•The uPoolID parameter
is that what will be used
to call reqbuf,getbuf
and relbuf

•p_vMemory points to
the block of memory
used as a pool.

how large is
the buffer

how many
buffers are

there

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define LINE_POOL 1
#define MAX_LINE_LENGTH 40
#define MAX_LINES 80
static char a_lines[MAX_LINES[MAX_LINE_LENGTH];

void main (void)
{
 (...)
 init_mem_pool (LINE_P00L, a_lines,
 MAX_LINES, MAX_LINE_LENGTH,
 TASK_P00L);
 (...)
}

void vPrintFormatTask (void)
{

//Pointer to current line
 char *p_chLine;

 (...)

 //Format lines and send them to the
 //vPrintOutputTask
 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "INVENTORY REPORT");
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Date: %02/%02/%02",
 iMonth, iDay, iYear % 100);
 sndmsg (PRINT_MB0X. p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Time: %02:%02",
 iHour,iMinute);
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 (...)
}

void vPrintOutputTask (void)
{
 char *p_chLine;

 while (TRUE)
 {
 //Wait for a line to come in.
 p_chLine = rcvmsg (PRINT_MBOX, WAIT_FOREVER);
 !!Do what is needed
 !!Send the line to the printer
 //Free the buffer back to the pool
 relbuf (LINE_P00L, p_chLine);
 }

}

• This code is the printing
subsystem for a tank monitoring
system, that reports the amount
of water of each tank.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define LINE_POOL 1
#define MAX_LINE_LENGTH 40
#define MAX_LINES 80
static char a_lines[MAX_LINES[MAX_LINE_LENGTH];

void main (void)
{
 (...)
 init_mem_pool (LINE_P00L, a_lines,
 MAX_LINES, MAX_LINE_LENGTH,
 TASK_P00L);
 (...)
}

void vPrintFormatTask (void)
{

//Pointer to current line
 char *p_chLine;

 (...)

 //Format lines and send them to the
 //vPrintOutputTask
 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "INVENTORY REPORT");
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Date: %02/%02/%02",
 iMonth, iDay, iYear % 100);
 sndmsg (PRINT_MB0X. p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Time: %02:%02",
 iHour,iMinute);
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 (...)
}

void vPrintOutputTask (void)
{
 char *p_chLine;

 while (TRUE)
 {
 //Wait for a line to come in.
 p_chLine = rcvmsg (PRINT_MBOX, WAIT_FOREVER);
 !!Do what is needed
 !!Send the line to the printer
 //Free the buffer back to the pool
 relbuf (LINE_P00L, p_chLine);
 }

}

• I have data and I need to
accurately print it.

• We need to format the report
quickly so that the data in the
report is consistent.

• Problem... I use a slow thermal
printer that prints only a few
lines each second.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define LINE_POOL 1
#define MAX_LINE_LENGTH 40
#define MAX_LINES 80
static char a_lines[MAX_LINES[MAX_LINE_LENGTH];

void main (void)
{
 (...)
 init_mem_pool (LINE_P00L, a_lines,
 MAX_LINES, MAX_LINE_LENGTH,
 TASK_P00L);
 (...)
}

void vPrintFormatTask (void)
{

//Pointer to current line
 char *p_chLine;

 (...)

 //Format lines and send them to the
 //vPrintOutputTask
 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "INVENTORY REPORT");
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Date: %02/%02/%02",
 iMonth, iDay, iYear % 100);
 sndmsg (PRINT_MB0X. p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Time: %02:%02",
 iHour,iMinute);
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 (...)
}

void vPrintOutputTask (void)
{
 char *p_chLine;

 while (TRUE)
 {
 //Wait for a line to come in.
 p_chLine = rcvmsg (PRINT_MBOX, WAIT_FOREVER);
 !!Do what is needed
 !!Send the line to the printer
 //Free the buffer back to the pool
 relbuf (LINE_P00L, p_chLine);
 }

}

• A higher-priority task formats
the report, and a lower-priority
task feeds the lines out to the
printer one at a time

• A pool of buffers stores the
formatted lines waiting to be
printed.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define LINE_POOL 1
#define MAX_LINE_LENGTH 40
#define MAX_LINES 80
static char a_lines[MAX_LINES[MAX_LINE_LENGTH];

void main (void)
{
 (...)
 init_mem_pool (LINE_P00L, a_lines,
 MAX_LINES, MAX_LINE_LENGTH,
 TASK_P00L);
 (...)
}

void vPrintFormatTask (void)
{

//Pointer to current line
 char *p_chLine;

 (...)

 //Format lines and send them to the
 //vPrintOutputTask
 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "INVENTORY REPORT");
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Date: %02/%02/%02",
 iMonth, iDay, iYear % 100);
 sndmsg (PRINT_MB0X. p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Time: %02:%02",
 iHour,iMinute);
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 (...)
}

void vPrintOutputTask (void)
{
 char *p_chLine;

 while (TRUE)
 {
 //Wait for a line to come in.
 p_chLine = rcvmsg (PRINT_MBOX, WAIT_FOREVER);
 !!Do what is needed
 !!Send the line to the printer
 //Free the buffer back to the pool
 relbuf (LINE_P00L, p_chLine);
 }

} • The code always allocates a
full 40-character buffer, even if a
given line has very little on it,
obviously a waste of memory.

• A pool of buffers stores the
formatted lines waiting to be
printed.

• This waste of memory is the
price you pay for the improved
speed with fixed-size buffers.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define LINE_POOL 1
#define MAX_LINE_LENGTH 40
#define MAX_LINES 80
static char a_lines[MAX_LINES[MAX_LINE_LENGTH];

void main (void)
{
 (...)
 init_mem_pool (LINE_P00L, a_lines,
 MAX_LINES, MAX_LINE_LENGTH,
 TASK_P00L);
 (...)
}

void vPrintFormatTask (void)
{

//Pointer to current line
 char *p_chLine;

 (...)

 //Format lines and send them to the
 //vPrintOutputTask
 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "INVENTORY REPORT");
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Date: %02/%02/%02",
 iMonth, iDay, iYear % 100);
 sndmsg (PRINT_MB0X. p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Time: %02:%02",
 iHour,iMinute);
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 (...)
}

void vPrintOutputTask (void)
{
 char *p_chLine;

 while (TRUE)
 {
 //Wait for a line to come in.
 p_chLine = rcvmsg (PRINT_MBOX, WAIT_FOREVER);
 !!Do what is needed
 !!Send the line to the printer
 //Free the buffer back to the pool
 relbuf (LINE_P00L, p_chLine);
 }

}

• Common compromise:
allocate three or four memory
buffer pools, each with a
different size of buffer.

•Then you retains the high-
speed memory routines but
efficiently uses memory.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define LINE_POOL 1
#define MAX_LINE_LENGTH 40
#define MAX_LINES 80
static char a_lines[MAX_LINES[MAX_LINE_LENGTH];

void main (void)
{
 (...)
 init_mem_pool (LINE_P00L, a_lines,
 MAX_LINES, MAX_LINE_LENGTH,
 TASK_P00L);
 (...)
}

void vPrintFormatTask (void)
{

//Pointer to current line
 char *p_chLine;

 (...)

 //Format lines and send them to the
 //vPrintOutputTask
 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "INVENTORY REPORT");
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Date: %02/%02/%02",
 iMonth, iDay, iYear % 100);
 sndmsg (PRINT_MB0X. p_chLine, PRI0RITY_N0RMAL);

 p_chLine = getbuf (LINE_P00L, WAIT_FOREVER);
 sprintf (p_chLine, "Time: %02:%02",
 iHour,iMinute);
 sndmsg (PRINT_MB0X, p_chLine, PRI0RITY_N0RMAL);

 (...)
}

void vPrintOutputTask (void)
{
 char *p_chLine;

 while (TRUE)
 {
 //Wait for a line to come in.
 p_chLine = rcvmsg (PRINT_MBOX, WAIT_FOREVER);
 !!Do what is needed
 !!Send the line to the printer
 //Free the buffer back to the pool
 relbuf (LINE_P00L, p_chLine);
 }

}

• Tasks that need little memory
allocate them from the pool
with the smallest buffers

• Tasks that need larger blocks
of memory allocate from the
pools with the larger buffers.

• Common compromise:
allocate three or four memory
buffer pools, each with a
different size of buffer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupt routines in an RTOS
environment

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupts

•It will be easier to understand the next couple of slides if you
think of interrupts as the timer functions we discussed on our
last class.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupts are NOT tasks

This means:

• There are no READY, BLOCKED or RUNNING states for
interrupts.

• In ROTS, when an interrupt is triggered, it must run right now.

• If it can’t get needed resource, the interrupt will stall there.

You also want the ISR to run until the completion... unless
another higher priority interrupt shows up.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why do you care about interrupts
running to completion?

• If not the interrupt flag will not be reset. (So... who cares?)

• The interrupt that was not properly terminated may not
complete for a long time. (This is bad)

• This will ensure all lower-priority interrupts will not be allowed.
(This is very bad)

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Rule #1

Interrupt routines in most RTOS environments must follow two
rules that do not apply to task code.

Rule #1 - An interrupt routine must not call any RTOS
function that might block the caller.

‣So... interrupt routines must not get semaphores, read from
queues or mailboxes that might be empty, wait for events, and
so on.

‣Most interrupt routines must run to completion in order to
reset the hardware. This way they are ready for the next
interrupt.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Why not?

• An interrupt routine must not call any RTOS function that might
block the caller. Why?

• If an interrupt routine calls an RTOS function and gets blocked,
the task that was running when the interrupt occurred will be
blocked, even if that task is the highest-priority task.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Nuclear reactor temperature example

static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 //This next line is **N0T ALLOWED**
 GetSemaphore (SEMAPHORE_TEMPERATURE);
 iTemperatures[0] = !!read in value from hardware;
 iTemperatures[l] = !!read in value from hardware;
 GiveSemaphore (SEMAPHORE_TEMPERATURE);
}

void vTaskTestTemperatures (void)
{
 int iTemp0; iTemp1;
 while (TRUE)
 {
 GetSemaphore (SEMAPHORE_TEMPERATURE);
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 GiveSemaphore (SEMAPHORE_TEMPERATURE);
 if (iTemp0 != iTemp1) !!Set off howling alarm;
 }
}

• Rule #1: No Blocking

• The task code and the interrupt
routine share the temperature data
with a semaphore.

• This code will not work. Why?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Nuclear reactor temperature example

static int iTemperatures[2];
void interrupt vReadTemperatures (void)
{
 //This next line is **N0T ALLOWED**
 GetSemaphore (SEMAPHORE_TEMPERATURE);
 iTemperatures[0] = !!read in value from hardware;
 iTemperatures[l] = !!read in value from hardware;
 GiveSemaphore (SEMAPHORE_TEMPERATURE);
}

void vTaskTestTemperatures (void)
{
 int iTemp0; iTemp1;
 while (TRUE)
 {
 GetSemaphore (SEMAPHORE_TEMPERATURE);
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 GiveSemaphore (SEMAPHORE_TEMPERATURE);
 if (iTemp0 != iTemp1) !!Set off howling alarm;
 }
}

• If the interrupt routine happened to
interrupt vTaskTestTemperatures
while it had the semaphore, then
when the interrupt routine called
GetSemaphore, the RTOS would
notice that the semaphore was
already taken and block.

• This will stop both the interrupt
routine and vTaskTestTemperatures

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Functions that never block

• Some RTOSs contain various
functions that never block.

• For example, functions that
returns the status of a
semaphore.

int iQueueTemp; // Queue for temperatures.
void interrupt vReadTemperatures (void) {
 int aTemperatures[2]; //16-bit temperatures.
 int iError;
 //Get a new set of temperatures.
 aTemperatures[0] = !!read in value from hardware;
 aTemperatures[1] = !!read in value from hardware;
 //Add the temperatures to a queue.

 sc_qpost (iQueueTemp,
 (char *) ((aTemperatures[0] « 16) |
 aTemperatures[1]), &iError);
}

void vMainTask (void) {
 long int ITemps; //32 bits; same size as a ptr.
 int aTemperatures[2];
 int iError;
 while (TRUE)
 {
 ITemps = (long) sc_qpend (iQueueTemp,
 WAIT_FOREVER,
 sizeof(int), &iError);
 aTemperatures[0] = (int) (ITemps » 16);
 aTemperatures[1] = (int) (ITemps & 0x0000ffff);
 if (aTemperatures[0] != aTemperatures[1])
 !!Set off howling alarm;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Functions that never block

• This code shows an
interrupt routine using
another nonblocking RTOS
function.

• That code is legal because
the sc_qpost function (from
the VRTX RTOS) will never
block.

• Note that this code would
violate rule 1 if sc_qpost
might block

int iQueueTemp; // Queue for temperatures.
void interrupt vReadTemperatures (void) {
 int aTemperatures[2]; //16-bit temperatures.
 int iError;
 //Get a new set of temperatures.
 aTemperatures[0] = !!read in value from hardware;
 aTemperatures[1] = !!read in value from hardware;
 //Add the temperatures to a queue.

 sc_qpost (iQueueTemp,
 (char *) ((aTemperatures[0] « 16) |
 aTemperatures[1]), &iError);
}

void vMainTask (void) {
 long int ITemps; //32 bits; same size as a ptr.
 int aTemperatures[2];
 int iError;
 while (TRUE)
 {
 ITemps = (long) sc_qpend (iQueueTemp,
 WAIT_FOREVER,
 sizeof(int), &iError);
 aTemperatures[0] = (int) (ITemps » 16);
 aTemperatures[1] = (int) (ITemps & 0x0000ffff);
 if (aTemperatures[0] != aTemperatures[1])
 !!Set off howling alarm;
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Rule #2

Rule #2 - An interrupt routine may not call any RTOS function
that might cause the RTOS to switch tasks unless the RTOS
knows that an interrupt routine, and not a task, is executing.

‣ Interrupt routines may not write to mailboxes or queues on
which tasks may be waiting, set events, release semaphores, and
so on.

‣ If an interrupt routine breaks this rule, the RTOS might switch
control away from the interrupt routine to run another task,
and the interrupt routine may not complete for a long time,
blocking at least all lower-priority interrupts and possibly all
interrupts.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Rule 2: No RTOS calls without fair
warning

• This figure shows an ideal behavior: how a microprocessor attention
gets shifted from one part of the code to another over time.

• The interrupt routine interrupts the lower-priority task, and calls the
RTOS to write a message to a mailbox.

• In this example, the mailbox message is: execute a higher level task.

ignore this

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How interrupts should work

• Ideally, when the interrupt routine exits, the RTOS arranges from the
microprocessor to execute an higher level task, which was waiting on
the mailbox.

ignore this

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What really happens (at least the
worst case scenario)

• If the higher-priority task is blocked on the mailbox, then as soon
as the interrupt routine writes to the mailbox, the RTOS
unblocks the higher-priority task.

• Instead of returning to the interrupt routine, the RTOS switches
to the higher-priority task.

ignore this

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How to solve this problem?

• The RTOS intercepts all the interrupts and then calls your interrupt routine.

• When the interrupt routine writes to the mailbox, the RTOS knows to
return to the interrupt routine and not to switch tasks, no matter what task is
unblocked by the write to the mailbox.

• When the interrupt routine is over, it returns, and the RTOS gets control
again.

ignore this

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Rule 2 and nested interrupts

• Nested interrupts: when one interrupt can be interrupted by another
higher priority interrupt.

• If an higher-priority interrupt, show up when a low-priority interrupt is
is running... a RTOS function must be made.

• The RTOS scheduler should NOT run until all interrupts are complete!

