
CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Basic design using a real-time
operating system
Reference: Simon Chapter 8

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Now what?

• Over the next couple of classes we will discuss how to put all
that we learned so far into useful designs for embedded-system
software.

• Assumption that your system has real time constraints.

• Be aware that embedded-system software design is complex and
has as many exceptions as it has rules.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Overview

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Overview

• It is harder to specify a real­time system than a desktop application.

• "What must the system do?" must also answer questions such as
"How fast must it do it?"

• Example of real time systems: bar-code scanner, nuclear reactor
temperature measurement system.

• You must know how critical each timing is.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Notions of criticality

• Critical path method (for project
management).

• PERT chart for a project with five
milestones (10 through 50) and six
activities (A through F).

• The project has two critical paths:
activities B and C, or A, D, and F –
giving a minimum project time of 7
months with fast tracking. Activity E
is sub-critical, and has a float of 1
month.

We can allocate
different groups

on different tasks.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Critical path

The critical path is the longest necessary path through a
network of activities when respecting their interdependencies.

Project management Electrical circuit

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Hard and soft real-time systems

• It’s probably okay for the cordless bar-code scanner to
respond on time in 99% of the cases and be slightly too
slow the other 1 percent of the time.

• However failure to respond quickly enough to reactor
issues 1% of the time is unacceptable.

• Systems with absolute deadlines, such as the nuclear
reactor system, are called hard real-time systems.

• Systems that demand good response but that allow some
fudge in the deadlines are called soft real-time
systems.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

To design effectively, you must know
something about the hardware!

• Suppose your system will receive data on a serial port at 9600
bits (about 1000 characters) per second: 9600 baud is 9600 bps.

• Storing in memory each each individual received character
causes an interrupt.

• Software design must accommodate a serial-port interrupt
routine that will execute about 1000 times each second.

• How would you improve on this?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

We can use direct memory access
(DMA)

• If the serial port hardware can copy the received characters into
memory through a DMA channel.

• ...and your system has no need to look at the characters
immediately when they arrive.

• Then you can dispense with that interrupt routine and the
problems it will cause.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What is direct memory access
(DMA)?

DMA is a piece of circuitry that, without software assistance, can:

• Read data from an I/O device, such as a serial port or a
network, and then write it into memory

or

• Read from memory and write its contents into an I/O device

Caution: memory only has one set of address and data signals.
The DMA must make sure that it is not driving those signals
while the microprocessor is also driving them.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Using DMA: we want to transfer the
data from the I/O into RAM

1.DMAREQ signal is asserted.

2.DMA circuit asserts BUSREQ
to the microprocessor.

3.When microprocessor is ready
to give up the bus, it asserts
BUSACK.

4.DMA circuit puts address in the
address bus.

5.DMAACK and WRITE/ are
asserted.

6. I/O places data in the data bus.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

What’s next?

Now that data has been written
to RAM, the DMA circuit
releases:

• DMAACK

• Address bus

• BUSREQ

The microprocessor releases
BUSACK and microprocessor
execution resumes.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Microprocessor speed

• You must have some feel for the microprocessor speed.

• Knowing which computations will take long enough to affect
other deadlines is a necessary design consideration.

• "Can our microprocessor execute the serial-port interrupt
routine 1000 times per second and still have any time left over
for other processing?" is a question that needs an answer.

• Unfortunately, only experience and experimentation can help you
with this.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Principles

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupts are driving force of
embedded systems

• Embedded systems commonly have nothing to do until something
requires a response:

• Either the passage of time OR some external event.

• The driving force of embedded systems are interrupts:

‣External events generally cause interrupts.

‣We can make the passage of time cause interrupts (with
hardware timers).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Common design technique: system is
commonly on the blocked state.

An embedded system design technique is to have RTOS tasks
spend most of the time in the blocked state waiting for:

‣an interrupt routine

‣another task to send a message

‣another task to cause an event

‣another task to free a semaphore

Any of these operations will tell the tasks that there is something
to do.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interrupts are fundamental

• When an interrupt occurs, the interrupt routine uses the RTOS
services to signal one or more of the tasks.

• Each does its work and each may then signal other tasks.

• Each interrupt can create a cascade of signals and task activity.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Simplified version of what happens
inside a telegraph system

• When the system receives a
network frame, the hardware
interrupts.

• A network frame is a data
packet that includes frame
synchronization that allows
the receiver to detect the
beginning and end of the
packet in the stream of
symbols or bits.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

DDP protocol task

• The interrupt routine resets
the hardware and then passes
a message containing the
received frame to the DDP
protocol task (outdated!).

• Datagram Delivery Protocol
(DDP) main responsibility is
for socket-to-socket delivery
of datagrams over an
AppleTalk network.

• In simpler terms, its a program
that routes data from point A
to B.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

After the interrupt, DDP protocol is
no longer blocked

• The DDP protocol task was
blocked waiting for a message

• When this message arrives,
the task wakes up and, among
many other things...

• ... Determines if the frame was
intended for the Telegraph or
if it was sent to some other
network station and received
by mistake.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Unblocking the ADSP protocol which
then reads the data packet

• If the frame was intended for
the Telegraph, the DDP
protocol task sends a message
containing the received frame
to the ADSP protocol task.

• This message unblocks the
ADSP protocol task, which
determines the contents of
the received frame.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Unblocking the ADSP protocol which
then reads the data packet

• If the frame contains print
data...

• ...the ADSP protocol task
sends a message containing
the data to the serial-port
task

• ...which sends the data to the
serial port hardware and
through it to the printer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Unblocking the ADSP protocol which
then reads the data packet

• If the frame contains a request
for printer status.

• ... the ADSP protocol task
constructs a response frame
and sends it to the DDP
protocol task to be sent on
the network.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Receiving serial data from the printer

• When the system receives
serial data from the printer,
the interrupt routine resets
the hardware and forwards
the data in a message to the
serial port task.

• If that data contains printer
status, the serial port task
forwards the status to the
ADSP protocol task.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Receiving serial data from the printer

• The ADSP protocol task
stores the status and uses it
when responding to later
status requests from the
network.

• Each time the system receives
a network frame or serial
port data, an interrupt routine
sends a message to one of the
tasks, which initiates a chain of
events that eventually causes
an appropriate response to
the received data.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

No interrupts

• When no frames or data are
arriving, there are no
interrupts, and the three tasks
in the system remain idle,
waiting to receive messages.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Write short interrupt routines

• In general you will be better off if you write short interrupt
routines rather than long ones. Why?

• First, since even the lowest-priority interrupt routine is executed
in preference to the highest-priority task code, writing longer
interrupt routines translates directly into slower task-code
response.

• Second, interrupt routines tend to be more bug-prone and
harder to debug than task code.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Events and deadlines

• Most events require various responses from your software: for
example, the system must reset port hardware, save received
data, reset the interrupt controller, analyze received data,
formulate a response, and so on.

• The deadlines for these responses may be quite different.

• Although it may be necessary to reset the port hardware and
interrupt controller and to save data immediately, the data
analysis and the response are often not nearly as urgent.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

System example

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Example

Suppose we are writing the software for a system with the
following characteristics:

‣The system must respond to commands coming from a serial
port. These, always end with a carriage return.

‣Commands arrive one at a time; the next command will not
arrive until the system responds to the previous one.

‣The serial port hardware can only store one received character
at a time, and characters may arrive quickly.

‣The system can respond to commands relatively slowly.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Wretched way to do it: do all work
inside an ISR

• Do all of the work (include processing the commands and
sending a command reply) inside an interrupt routine that
receives characters.

• That interrupt routine will be long and complex and difficult to
debug, and it will slow response for every operation the system
does in task code.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Still a bad way to do it: forward every
character in a RTOS message

• Interrupt routine that simply forwards every character in an
RTOS message to a command parsing task.

• The interrupt routine will be short.

• A practical disadvantage is that the interrupt routine will send a
lot of messages to the command parsing task.

• Unfortunately putting messages onto an RTOS queue is not
instantaneous.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Possible design compromise

• Interrupt routine that saves the received characters in a buffer
and watches for the carriage return that ends each command.

• When the carriage return arrives, the interrupt routine sends a
single message to the command parsing task, which reads the
characters out of the buffer.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define SIZEOF_CMD_BUFFER 200
char a_chCommandBuffer[SIZEOF_CMD_BUFFER];
#define MSG_EMPTY ((char *) 0)
char *mboxCommand = MSG_EMPTY;
#define MSG_C0MMAND_ARRIVED ((char *) 1)

void interrupt vGetCommandCharacter (void)
{
 static char *p_chCommandBufferTail = a_chCommandBuffer;
 int iError;
 *p_chCommandBufferTail = !!Read rec. character from hardware;
 if (*p_chCommandBufferTail == '\r')
 sc_post (&mboxCommand, MSG_C0MMAND_ARRIVED, &iError);
 //Advance the tail pointer and wrap if necessary
 ++p_chCommandBufferTail;
 if (p_chCommandBufferTail==&a_chCommandBuffer[SIZEOF_CMD_BUFFER])
 p_chCommandBufferTail = a_chCommandBuffer;
 !!Reset the hardware as necessary.
}

void vInterpretCommandTask (void)
{
 static char *p_chCommandBufferHead = a_chCommandBuffer;
 int iError;
 while (TRUE)
 {
 //Wait for the next command to arrive.
 sc_pend (&mboxCommand, WAIT_F0REVER, &iError);
 //We have a command.
 !!Interpret the command at p_chCommandBufferHead
 !!Advance p_chCommandBuff'erHead past carriage return
 }
}

interrupt routine
vGetCommandCharacter
stores the incoming
characters in
a_chCommandBuffer and
checks each incoming
character for a carriage
return.

carriage return has
arrived... so post that
command into a mailbox.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define SIZEOF_CMD_BUFFER 200
char a_chCommandBuffer[SIZEOF_CMD_BUFFER];
#define MSG_EMPTY ((char *) 0)
char *mboxCommand = MSG_EMPTY;
#define MSG_C0MMAND_ARRIVED ((char *) 1)

void interrupt vGetCommandCharacter (void)
{
 static char *p_chCommandBufferTail = a_chCommandBuffer;
 int iError;
 *p_chCommandBufferTail = !!Read rec. character from hardware;
 if (*p_chCommandBufferTail == '\r')
 sc_post (&mboxCommand, MSG_C0MMAND_ARRIVED, &iError);
 //Advance the tail pointer and wrap if necessary
 ++p_chCommandBufferTail;
 if (p_chCommandBufferTail==&a_chCommandBuffer[SIZEOF_CMD_BUFFER])
 p_chCommandBufferTail = a_chCommandBuffer;
 !!Reset the hardware as necessary.
}

void vInterpretCommandTask (void)
{
 static char *p_chCommandBufferHead = a_chCommandBuffer;
 int iError;
 while (TRUE)
 {
 //Wait for the next command to arrive.
 sc_pend (&mboxCommand, WAIT_F0REVER, &iError);
 //We have a command.
 !!Interpret the command at p_chCommandBufferHead
 !!Advance p_chCommandBuff'erHead past carriage return
 }
}

vlnterpretCommandTask,
waits on the mailbox;
when it receives a
message, it reads the
characters of the current
command from
a_chCommandBuffer

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

#define SIZEOF_CMD_BUFFER 200
char a_chCommandBuffer[SIZEOF_CMD_BUFFER];
#define MSG_EMPTY ((char *) 0)
char *mboxCommand = MSG_EMPTY;
#define MSG_C0MMAND_ARRIVED ((char *) 1)

void interrupt vGetCommandCharacter (void)
{
 static char *p_chCommandBufferTail = a_chCommandBuffer;
 int iError;
 *p_chCommandBufferTail = !!Read rec. character from hardware;
 if (*p_chCommandBufferTail == '\r')
 sc_post (&mboxCommand, MSG_C0MMAND_ARRIVED, &iError);
 //Advance the tail pointer and wrap if necessary
 ++p_chCommandBufferTail;
 if (p_chCommandBufferTail==&a_chCommandBuffer[SIZEOF_CMD_BUFFER])
 p_chCommandBufferTail = a_chCommandBuffer;
 !!Reset the hardware as necessary.
}

void vInterpretCommandTask (void)
{
 static char *p_chCommandBufferHead = a_chCommandBuffer;
 int iError;
 while (TRUE)
 {
 //Wait for the next command to arrive.
 sc_pend (&mboxCommand, WAIT_F0REVER, &iError);
 //We have a command.
 !!Interpret the command at p_chCommandBufferHead
 !!Advance p_chCommandBuff'erHead past carriage return
 }
}

sc_post and sc_pend
functions are non-
blocking from the

VRTX system

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

How many tasks?

• One of the first problems in an embedded-system design is to
divide your system's work into RTOS tasks.

• Obvious question is "Am I better off with more tasks or with
fewer tasks?"

• What are the advantages and disadvantages of having more tasks?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Advantages of having lots of tasks

• With more tasks you have better control of the relative
response times of the different parts of your system's work.

• With more tasks your system can be somewhat more
modular. Using a separate task for each device allows for
cleaner code.

• With more tasks you can sometimes encapsulate data more
effectively. Only the code in that task needs access to the
variables.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Disadvantages of having lots of tasks

• With more tasks you are likely to have more data shared
among two or more tasks... so more microprocessor time is lost
handling the semaphores.

• With more tasks you are likely to have more requirements
to pass messages from one task to another through pipes,
mailboxes, queues, and so on. This will also translate into more
microprocessor time and more chances for bugs.

• Each task requires a stack; therefore, with more tasks you need
more memory.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Even more disadvantages of having
more tasks

• Each time the RTOS switches tasks, a certain amount of
microprocessor time evaporates saving the context of the
task that is stopping and restoring the context of the task that is
about to run.

• More tasks probably means more calls to the RTOS. RTOS
vendors promote their products by telling you how fast they can
switch tasks, put messages into mailboxes, set events, and so on.
Your system runs slower if it calls many RTOS functions

• ... Other things being equal, use as few tasks as you can; add more
tasks to your design only for clear reasons.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

You need tasks for priority

• Let's examine some situations in which it makes sense to add
more tasks to your system design.

• First, the obvious advantage of the RTOS architecture
over the others is the improved control of task code
response.

• One obvious reason for having multiple tasks is to be able to
assign higher priorities to parts of the work with tighter
response time requirements.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

You need tasks for encapsulation

• It often makes sense to have a separate task to deal with
hardware shared by different parts of the system.

• For example, the printer‘s display is shared by buttons and the
printer mechanism.

‣A single task that controls the hardware display can solve these
problems.

‣When other tasks in the system have information to display,
they will send messages to the display task.

‣The RTOS will ensure that messages sent to the display task are
queued properly.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

A separate task helps control shared
hardware

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Another encapsulation example

If various parts of a system need to store data in a flash memory,
a single task responsible for dealing with the flash memory
hardware can simplify your system.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{
 //FLASH_READ or FLASH_WRITE
 FLASH_0P eFlash0p;
 //Queue to respond to on reads
 mdt_q sQueueResponse;
 //Sector of data
 int iSector;
 //Data in sector
 BYTE a_byData[SECTOR_SIZE];
} FLASH_MSG;

void vInitFlash (void){
 //This function must be called before any other,
 //preferably in the startup code.
 //Create a queue called 'FLASH' for input
 //to this task
 mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
 //Handle of flash task input queue
 mdt_q sQueueFlash;
 //Message to the flash routine.
 FLASH_MSG sFlashMsg;
 (...)
 //We need to write data to the flash
 //Set up the data in the message structure
 !!Write data to sFlashMsg.a_byData
 sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A;
 sFlashMsg.eFlashOp = FLASH_WRITE;
 //Open queue and snd the message with priority 5
 sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,
 NULL);
 mq_send (sQueueFlash, (void *) &sFlashMsg,
 sizeof sFlashMsg, 5);
 mq_close (sQueueFlash);
 (...)
}

void vHandleFlashTask (void)
{
 //Handle of our input queue
 mdt_q sQueueOurs;
 //Message telling us what to do.
 FLASH_MSG sFlashMsg;
 //Priority of received message
 int iMsgPriority;
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE)
 {
 //Get the next request.
 mq_receive (sQueueOurs, (void *) &sFlashMsg,
 sizeof sFlashMsg, &iMsgPriority);
 switch (sFlashMsg.eFlashOp)
 {
 case FLASH_READ:
 !!Read data from flash sector sFlashMsg.iSector
 !! into sFlashMsg.a_byData
 //Send the data back on the queue specified
 //by the caller with the same priority as
 //the caller sent the message to us.

 mq_send (sFlashMsg.sQueueResponse,
 (void *) &sFlashMsg, sizeof sFlashMsg,
 iMsgPriority);
 break;

 case FLASH_WRITE:
 !!Write data to flash sector sFlashMsg.iSector
 !!from sFlashMsg.a_byData
 //Wait until the flash recovers from writing.
 nanosleep (!! Amount of time needed for flash);
 break;
 }
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{
 //FLASH_READ or FLASH_WRITE
 FLASH_0P eFlash0p;
 //Queue to respond to on reads
 mdt_q sQueueResponse;
 //Sector of data
 int iSector;
 //Data in sector
 BYTE a_byData[SECTOR_SIZE];
} FLASH_MSG;

void vInitFlash (void){
 //This function must be called before any other,
 //preferably in the startup code.
 //Create a queue called 'FLASH' for input
 //to this task
 mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
 //Handle of flash task input queue
 mdt_q sQueueFlash;
 //Message to the flash routine.
 FLASH_MSG sFlashMsg;
 (...)
 //We need to write data to the flash
 //Set up the data in the message structure
 !!Write data to sFlashMsg.a_byData
 sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A;
 sFlashMsg.eFlashOp = FLASH_WRITE;
 //Open queue and snd the message with priority 5
 sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,
 NULL);
 mq_send (sQueueFlash, (void *) &sFlashMsg,
 sizeof sFlashMsg, 5);
 mq_close (sQueueFlash);
 (...)
}

void vHandleFlashTask (void)
{
 //Handle of our input queue
 mdt_q sQueueOurs;
 //Message telling us what to do.
 FLASH_MSG sFlashMsg;
 //Priority of received message
 int iMsgPriority;
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE)
 {
 //Get the next request.
 mq_receive (sQueueOurs, (void *) &sFlashMsg,
 sizeof sFlashMsg, &iMsgPriority);
 switch (sFlashMsg.eFlashOp)
 {
 case FLASH_READ:
 !!Read data from flash sector sFlashMsg.iSector
 !! into sFlashMsg.a_byData
 //Send the data back on the queue specified
 //by the caller with the same priority as
 //the caller sent the message to us.

 mq_send (sFlashMsg.sQueueResponse,
 (void *) &sFlashMsg, sizeof sFlashMsg,
 iMsgPriority);
 break;

 case FLASH_WRITE:
 !!Write data to flash sector sFlashMsg.iSector
 !!from sFlashMsg.a_byData
 //Wait until the flash recovers from writing.
 nanosleep (!! Amount of time needed for flash);
 break;
 }
 }
}

• Any other task in the system
wanting to write to the flash
sends a message containing a
FLASH_MSG structure to
vHandleFlashTask.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{
 //FLASH_READ or FLASH_WRITE
 FLASH_0P eFlash0p;
 //Queue to respond to on reads
 mdt_q sQueueResponse;
 //Sector of data
 int iSector;
 //Data in sector
 BYTE a_byData[SECTOR_SIZE];
} FLASH_MSG;

void vInitFlash (void){
 //This function must be called before any other,
 //preferably in the startup code.
 //Create a queue called 'FLASH' for input
 //to this task
 mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
 //Handle of flash task input queue
 mdt_q sQueueFlash;
 //Message to the flash routine.
 FLASH_MSG sFlashMsg;
 (...)
 //We need to write data to the flash
 //Set up the data in the message structure
 !!Write data to sFlashMsg.a_byData
 sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A;
 sFlashMsg.eFlashOp = FLASH_WRITE;
 //Open queue and snd the message with priority 5
 sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,
 NULL);
 mq_send (sQueueFlash, (void *) &sFlashMsg,
 sizeof sFlashMsg, 5);
 mq_close (sQueueFlash);
 (...)
}

void vHandleFlashTask (void)
{
 //Handle of our input queue
 mdt_q sQueueOurs;
 //Message telling us what to do.
 FLASH_MSG sFlashMsg;
 //Priority of received message
 int iMsgPriority;
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE)
 {
 //Get the next request.
 mq_receive (sQueueOurs, (void *) &sFlashMsg,
 sizeof sFlashMsg, &iMsgPriority);
 switch (sFlashMsg.eFlashOp)
 {
 case FLASH_READ:
 !!Read data from flash sector sFlashMsg.iSector
 !! into sFlashMsg.a_byData
 //Send the data back on the queue specified
 //by the caller with the same priority as
 //the caller sent the message to us.

 mq_send (sFlashMsg.sQueueResponse,
 (void *) &sFlashMsg, sizeof sFlashMsg,
 iMsgPriority);
 break;

 case FLASH_WRITE:
 !!Write data to flash sector sFlashMsg.iSector
 !!from sFlashMsg.a_byData
 //Wait until the flash recovers from writing.
 nanosleep (!! Amount of time needed for flash);
 break;
 }
 }
}

• Any other task in the system
wanting to write to the flash
sends a message containing a
FLASH_MSG structure to
vHandleFlashTask.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{
 //FLASH_READ or FLASH_WRITE
 FLASH_0P eFlash0p;
 //Queue to respond to on reads
 mdt_q sQueueResponse;
 //Sector of data
 int iSector;
 //Data in sector
 BYTE a_byData[SECTOR_SIZE];
} FLASH_MSG;

void vInitFlash (void){
 //This function must be called before any other,
 //preferably in the startup code.
 //Create a queue called 'FLASH' for input
 //to this task
 mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
 //Handle of flash task input queue
 mdt_q sQueueFlash;
 //Message to the flash routine.
 FLASH_MSG sFlashMsg;
 (...)
 //We need to write data to the flash
 //Set up the data in the message structure
 !!Write data to sFlashMsg.a_byData
 sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A;
 sFlashMsg.eFlashOp = FLASH_WRITE;
 //Open queue and snd the message with priority 5
 sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,
 NULL);
 mq_send (sQueueFlash, (void *) &sFlashMsg,
 sizeof sFlashMsg, 5);
 mq_close (sQueueFlash);
 (...)
}

void vHandleFlashTask (void)
{
 //Handle of our input queue
 mdt_q sQueueOurs;
 //Message telling us what to do.
 FLASH_MSG sFlashMsg;
 //Priority of received message
 int iMsgPriority;
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE)
 {
 //Get the next request.
 mq_receive (sQueueOurs, (void *) &sFlashMsg,
 sizeof sFlashMsg, &iMsgPriority);
 switch (sFlashMsg.eFlashOp)
 {
 case FLASH_READ:
 !!Read data from flash sector sFlashMsg.iSector
 !! into sFlashMsg.a_byData
 //Send the data back on the queue specified
 //by the caller with the same priority as
 //the caller sent the message to us.

 mq_send (sFlashMsg.sQueueResponse,
 (void *) &sFlashMsg, sizeof sFlashMsg,
 iMsgPriority);
 break;

 case FLASH_WRITE:
 !!Write data to flash sector sFlashMsg.iSector
 !!from sFlashMsg.a_byData
 //Wait until the flash recovers from writing.
 nanosleep (!! Amount of time needed for flash);
 break;
 }
 }
}

• The vHandleFlashTask task
copies the contents of a_byData
in the FLASH_MSG structure
into the sector indicated by
iSector.

• Any task wishing to read from
the flash sends a message to
vHandleFlashTask containing a
FLASH_ MSG structure with
eFlash0p set to FLASH_READ.

• The vHandleFlashTask task will
mail the data from the flash
back to the queue specified by
the sQueueResponse element.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Other tasks you might or might not
need

• Good idea to have many small tasks, so
that each task is simple. Keep in mind that
the time your system spends switching
tasks will eat into your throughput.

• Good idea: Have separate tasks for work
that needs to be done in response to
separate stimulus.

• However, if Task1 and Task2 share data or
must communicate with one another, the
problems that arise from that may make
your code more complicated.

void task1 (void)
{
 while (TRUE)
 {
 !!Wait for stimulus 1
 !!Deal with stimulus 1
 }
}

void task2 (void)
{
 while (TRUE)
 {
 !!Wait for stimulus 2
 !!Deal with stimulus 2
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Recommended task structure

• You should use this task structure
most of the time.

• The task remains in an infinite loop,
waiting for an RTOS signal that there
is something for it to do.

• That signal is most commonly in the
form of a message from a queue.

• This task declares its own private
data.

•Advantages?

!!Private static data is declared here

void vTaskA (void)
{
 !!More private data declared here,
 !!either static or on the stack
 !!Initialization code, if needed.

 while (FOREVER)
 {
 !!Wait for a system signal
 !!...(event, queue message, etc.)
 switch (!!type of signal)
 {
 case !! signal type 1:
 (...)
 break;
 case !! signal type 2
 (...)
 break;
 (...)
 }
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Advantages of this recommended task
structure

• Advantages:

‣ The task blocks in only one place.
When another task puts a request
on this task's queue, this task is not
off waiting for some other event
that may or may not happen in a
timely fashion.

‣When there is nothing for this task
to do, its input queue will be
empty, and the task will block and
use up no microprocessor time.

!!Private static data is declared here

void vTaskA (void)
{
 !!More private data declared here,
 !!either static or on the stack
 !!Initialization code, if needed.

 while (FOREVER)
 {
 !!Wait for a system signal
 !!...(event, queue message, etc.)
 switch (!!type of signal)
 {
 case !! signal type 1:
 (...)
 break;
 case !! signal type 2
 (...)
 break;
 (...)
 }
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

More advantages of this
recommended task structure

• This task does not have public data
that other tasks can share; other
tasks that wish to see or change its
private data write requests into the
queue, and this task handles them.

• There is no concern that other tasks
using the data use semaphores
properly; there is no shared data, and
there are no semaphores.

!!Private static data is declared here

void vTaskA (void)
{
 !!More private data declared here,
 !!either static or on the stack
 !!Initialization code, if needed.

 while (FOREVER)
 {
 !!Wait for a system signal
 !!...(event, queue message, etc.)
 switch (!!type of signal)
 {
 case !! signal type 1:
 (...)
 break;
 case !! signal type 2
 (...)
 break;
 (...)
 }
 }
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Avoid creating and destroying tasks

• Every RTOS allows you to create tasks as the system is starting.

• Most RTOSs also allow you to create and destroy tasks while the
system is running.

• First, the functions that create and destroy tasks are typically the
most time-consuming functions in the RTOS.

• Second, whereas creating a task is a relatively reliable operation, it
can be difficult to destroy a task without leaving little
pieces lying around to cause bugs.

• The alternative to creating and destroying tasks is to create all of
the tasks you'll need at system startup. Later, if a task has nothing
to do, it can block for as long as necessary on its input queue.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Timings of an RTOS on a 20 MHz Intel
80386

Service Time
Get a semaphore 10 microseconds (μsec)

Release a semaphore 6—38 μsec
Switch tasks 17-35 μsec

Write to a queue 49-68 μsec
Read from a queue 12-38 μsec

Create a task 158 μsec
Destroy a task 36—57 μsec

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Consider turning time-slicing off

• RTOS scheduler always runs the highest-priority ready task.

• Consider two or more ready tasks have the same priority and no
other ready task has a higher priority. RTOSs normally time-slice
among those tasks, giving the microprocessor to each tasks for a
short period of time

• RTOSs also allow you to turn this option off.

• Time-slicing causes more task switches and therefore cuts
throughput.

• Unless you can pinpoint a reason that it will be useful in your
system, you're probably better off without it.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Consider restricting your use of the
RTOS

• Most RTOSs, even fairly small ones, offer more services than you
are likely to need on any given project.

• Many RTOSs allow you to configure them and to remove any
services that you do not use

• You can save memory space by figuring out a subset of the RTOS
features that is sufficient for your system and using only that.

• Many embedded-system designers prefer to put a shell around
the RTOS and have all of the rest of their code call the shell
rather than directly call the RTOS. It makes the code more
portable from one RTOS to another, because only the shell needs
be rewritten.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

An example: lets design an
embedded system

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Tank monitoring system

•The purpose of this
example is to show you
the considerations that
go into the process.

•This system monitors up
to eight underground
tanks by reading
thermometers and the
levels of floats.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Functionality of the tank monitoring
system

•When the hardware has obtained
a new float reading, it interrupts;
the microprocessor can read the
level.

•The microprocessor can read the
temperature in any tank at any
time.

•The system must pay special
attention to tanks in which the
level is rising rapidly and set off
the alarm if such a tank gets close
to full and the level is still rising.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Interface for the tank monitoring
system

•The UI consists of a keypad, a liquid
crystal display, and a thermal printer.

•With the keypad, the user can tell the
system to display various information
such as the levels in the tanks

•The system will override the user's
display preference and show messages
if it detects a leak or a overflow.

•The system also has a connector to a
loud alarm bell.

•The printer can accept one line of a
report at a time.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Some initial questions

•When the float in one tank is rising rapidly, how often do we
need to read it? Often.

•How quickly must the system respond when the user pushes a
button? In no more than 0.1 second.

•How fast does the printer print? Two or three lines per sec.

•How long does it take to calculate the quantity of gasoline in a
tank? 4 or 5 seconds.

•What microprocessor will this system use? Cost constraints
dictate that the system run on an 8-bit micro-controller.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

More questions

•How long will it take for the microprocessor to calculate the
number of gallons in a tank, given the float level and
temperature? Figure it out before designing system.

•How long will it take for the microprocessor to recognize a
leak or a potential overflow? Figure it out before designing system.

•Is it possible to read the level from more than one tank at
once? No. In fact, trying to read the level from a second tank before
a first read is complete will mess up your results.

•How difficult is it for software to turn the alarm bell on and
off?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Deciding to use an RTOS

• Decide whether an RTOS architecture is suitable.

• For any hope of meeting the other deadlines discussed earlier,
we'll have to suspend the calculation when other processing is
necessary.

• Can you build a system that does all this work in interrupt
routines? Probably yes.

• Will it be easy to build a system that does all this work in
interrupt routines? Probably not.

• Using an RTOS looks like a better solution in this case

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Divide the work of the system into
individual tasks

•We need a level calculation task that takes as input the levels
and temperatures in the tanks, calculates how much gasoline is
in each tank, and perhaps detects leaks by looking at previous
gasoline levels.

•Since this takes 4 or 5 seconds for each tank, and since other
things must happen more quickly than that, this is the classic
RTOS situation calling for a separate, low-priority task.

•One-task-per-tank plan creates code problems.

•Disadvantage of the one-task-for-all-tanks is that the task must
have code to figure out which tank to deal with next.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Overflow-detection must be separate
from the level-calculation

•Overflow detection must happen at a higher priority than the
level calculation and leak detection processes; therefore, it
must be in a separate task.

•Both the level calculation task and the overflow detection task
must read from the float hardware; must make sure that they
do not fight over it.

•You could use a semaphore to ensure that only one task tries
to read from the floats at one time.

•You could set up a separate float hardware task and have the
other tasks queue messages to that task requesting service.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Button handling task

•Since some commands require button presses, so we need a
state machine to keep track of the buttons already pressed.

•Can be done in an interrupt routine... but it will be long and
complicated.

•Various tasks have messages to be displayed: For example, the
level calculation task (when it detects a leak), the overflow
detection task, and the button handling task.

•We need a separate display task. For example, to handle the
situation when the user presses a button right after a leak.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

A Semaphore can't protect the display
properly

{
 (...)
 if (!!Leak detected)
 {
 TakeSemaphore (SEMAPHORE_DISPLAY);
 !! Write "LEAK!!!" to display
 ReleaseSemaphore (SEMAPHORE_DISPLAY);
 }
 (...)
}

void vButtonHandlingTask (void)
{
 (...)
 if (!! Button just pressed necessitates a prompt)
 {
 TakeSemaphore (SEMAPH0RE_DISPLAY);
 !!Write "Press next button" to display
 ReleaseSemaphore (SEMAPHORE_DISPLAY);
 }
 (...)
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Alarm bell

•The alarm bell is another piece of shared hardware.

•The level calculation and overflow detection tasks can turn it
on, and the button task can turn it OFF.

•Turning the bell ON and OFF is atomic.

•If the system discovers a second leak or an overflow right after
the user turns OFF the bell, it should turn the bell back on
again to call attention to the second problem.

•It probably makes sense to let any task turn the bell ON or
OFF directly.

•A separate alarm bell task is not useful.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Printer

•Since the printer interrupts after printing each line, we can
write an interrupt routine to send successive lines of each
report to the printer.

•First, if reports might take more than one-tenth of a second to
format, then the formatting process must be in a task with
lower priority than the button handling task so as not to
interfere with the required button response.

•Second, the complication of maintaining a print queue may
make a separate task easier to deal with.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Starting the system

•Interrupt routines start sending signals through the system,
telling tasks to do their work.

•Whenever the user presses a button, the button hardware
interrupts the microprocessor.

•The button interrupt routine can send a message to the button
handling task, which can interpret the commands and then
forward messages on to the display task and the printer task as
necessary.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Shared data problems

•The gasoline levels data is shared by several tasks: the level
calculation task (leak detection), the display task (show data to
user), and the print formatting task (prints data)

•Should we protect the data with a semaphore or should we
create a separate task responsible for keeping the data
consistent for the other tasks?

•"What is the longest that any one task will hold on to the
semaphore?" (about 1 ms)

•“Can every other task wait that long?” (Yes)

•So we do not need an additional task...

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Tasks in the underground tank system

Task Priority Reason for Creating This Task

Level
calculation task

Low Other processing is much higher priority than this
calculation, and this calculation is a microprocessor hog.

Overflow
detection task

High This task determines whether there is an overflow; it is
important that this task operate quickly.

Button handling
task

High This task controls the state machine that operates the user
interface, relieving the button interrupt routine of that
complication, but still responding quickly.

Display task High Since various other tasks use the display, this task makes sure
that they do not fight over it.

Print formatting
task

Med Print formatting might take long enough that it interferes
with the required response to the buttons. Also, it may be
simpler to handle the print queue in a separate task.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Encapsulating semaphores and
queues

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Review of semaphore problems

•Forgetting to take the semaphore: Semaphores only work if
every task that accesses the shared data, uses the semaphore.

•Forgetting to release the semaphore: If any task fails to release
the semaphore, then every other task that ever uses the
semaphore will sooner or later be blocked.

•Taking the wrong semaphore: If you are using multiple
semaphores, then taking the wrong one is bad.

•Holding a semaphore for too long: Whenever one task takes a
semaphore, every other task that subsequently wants that
semaphore has to wait until the semaphore is released.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Encapsulating semaphores

•Most of semaphore bugs stem from undisciplined use.

•For example ... allowing code in many different modules to use
the same semaphore and hoping that they all use it correctly.

•You can squash these bugs by hiding the semaphore and the
data that it protects inside of a module, thereby encapsulating
both.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code that encapsulates a semaphore

/* File: tmrtask.c */
static long int lSecondsToday;

void vTimerTask (void)
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_0F_DAY);
 ++lSecondsToday;
 if (lSecondsToday == 60*60*24) lSecondsToday = 0L;
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 (...)
}

long lSecondsSinceMidnight (void)
{
 long lReturnValue;
 GetSemaphore (SEMAPHORE_TIME_0F_DAY);
 lReturnValue = lSecondsToday;
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 return (lReturnValue);
}

/* File: hacker.c */
long lSecondsSinceMidnight (void);

void vHackerTask (void)
{
 (...)
 lDeadline = lSecondsSinceMidnight () + 1800L;
 (...)
 if (lSecondsSinceMidnight () > 3600 * 12)
 (...)
}

/* File: junior.c */
long lSecondsSinceMidnight (void);

void vJuniorProgrammerTask (void)
{
 long lTemp;
 (...)
 lTemp = lSecondsSinceMidnight ();
 for (1 = lTemp; 1 < lTemp + 10; ++1)
 (...)
}

We don’t want tasks to access the variable lSecondsToday directly.
If you want the value of lSecondsToday you must use lSecondsSinceMidnight.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Code that encapsulates a semaphore

/* File: tmrtask.c */
static long int lSecondsToday;

void vTimerTask (void)
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_0F_DAY);
 ++lSecondsToday;
 if (lSecondsToday == 60*60*24) lSecondsToday = 0L;
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 (...)
}

long lSecondsSinceMidnight (void)
{
 long lReturnValue;
 GetSemaphore (SEMAPHORE_TIME_0F_DAY);
 lReturnValue = lSecondsToday;
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 return (lReturnValue);
}

/* File: hacker.c */
long lSecondsSinceMidnight (void);

void vHackerTask (void)
{
 (...)
 lDeadline = lSecondsSinceMidnight () + 1800L;
 (...)
 if (lSecondsSinceMidnight () > 3600 * 12)
 (...)
}

/* File: junior.c */
long lSecondsSinceMidnight (void);

void vJuniorProgrammerTask (void)
{
 long lTemp;
 (...)
 lTemp = lSecondsSinceMidnight ();
 for (1 = lTemp; 1 < lTemp + 10; ++1)
 (...)
}

Since lSecondsSinceMidnight uses the semaphore correctly, no bugs will be
caused.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C Review: literal constants

/* File: tmrtask.c */
static long int lSecondsToday;

void vTimerTask (void)
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_0F_DAY);
 ++lSecondsToday;
 if (lSecondsToday == 60*60*24) lSecondsToday = 0L;
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 (...)
}

long lSecondsSinceMidnight (void)
{
 long lReturnValue;
 GetSemaphore (SEMAPHORE_TIME_0F_DAY);
 lReturnValue = lSecondsToday;
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 return (lReturnValue);
}

/* File: hacker.c */
long lSecondsSinceMidnight (void);

void vHackerTask (void)
{
 (...)
 lDeadline = lSecondsSinceMidnight () + 1800L;
 (...)
 if (lSecondsSinceMidnight () > 3600 * 12)
 (...)
}

/* File: junior.c */
long lSecondsSinceMidnight (void);

void vJuniorProgrammerTask (void)
{
 long lTemp;
 (...)
 lTemp = lSecondsSinceMidnight ();
 for (1 = lTemp; 1 < lTemp + 10; ++1)
 (...)
}

You specify the value of a type of constant at compile time, so you don’t have to
perform any time intensive (background) data-conversion during run-time.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Wretched alternative: invitation to
semaphore and shared data bugs

/* File: tmrtask.c */
long int lSecondsToday;

void vTimerTask (void)
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_OF_DAY);
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 GiveSemaphore (SEMAPH0RE_TIME_0F_DAY);
 (...)
}

/* File: junior.c */
extern long int lSecondsToday;
void vJuniorProgrammerTask (void)
{
 (...)
 for (i=lSecondsToday; i<lSecondsToday+10; ++i)
 (...)
}

/* File: hacker.c */
extern long int 1SecondsToday;
void vHackerTask (void)
{
 (...)
 iDeadline = lSecondsToday + 1800L;
 (...)
 if (lSecondsToday > 3600 * 12)
 (...)
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

C-Review: external variable

/* File: tmrtask.c */
long int lSecondsToday;

void vTimerTask (void)
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_OF_DAY);
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 GiveSemaphore (SEMAPH0RE_TIME_0F_DAY);
 (...)
}

/* File: junior.c */
extern long int lSecondsToday;
void vJuniorProgrammerTask (void)
{
 (...)
 for (i=lSecondsToday; i<lSecondsToday+10; ++i)
 (...)
}

/* File: hacker.c */
extern long int 1SecondsToday;
void vHackerTask (void)
{
 (...)
 iDeadline = lSecondsToday + 1800L;
 (...)
 if (lSecondsToday > 3600 * 12)
 (...)
}

Using the shared variable without semaphore protection.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

External variable in C

•An external variable is a variable defined outside any function block.

•On the other hand, a local (automatic) variable is a variable defined
inside a function block.

•The extern keyword means "declare without defining".

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

External variable in C

•The variable GlobalVariable is
defined in File 1. In order to utilize
the same variable in File 2, it must be
declared.

•Regardless of the number of files, a
global variable is only defined once.

•If the program is in several source
files, and a variable is defined in file1
and used in file2 and file3, then
extern declarations are needed in
file2 and file3 to connect the
occurrences of the variable.

Remember the difference
between definition and
declaration.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Hard Real-Time Scheduling
Considerations

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Hard real-time scheduling
considerations

•The obvious issue that arises in hard real-time systems is that
you must somehow guarantee that the system will meet the
hard deadlines.

•The ability to meet hard deadlines comes from writing fast
code

•To write some frequently called subroutine in assembly
language.

•If you can characterize your tasks, then the studies can help
you determine if your system will meet its deadlines.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Saving Memory Space

•Embedded systems often have limited memory.

•RTOS: each task needs memory space for its stack.

•The first method for determining how much stack-space a task
needs is to examine your code.

•The second method is experimental. Fill each stack with some
recognizable data pattern at startup, run the system for a
period of time

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

...A few ways to save code space

•Make sure that you aren't using two functions to do the same
thing.

•Check that your development tools aren't sabotaging you.

•Configure your RTOS to contain only those functions that you
need

•Look at the assembly language listings created by your cross-
compiler to see if certain of your C statements translate into
huge numbers of instructions.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Look at the assembly code...

struct sMyStruct a_sMyData[3];
struct sMyStruct *p_sMyData;
int i;

/* Method 1 for initializing data */
a_sMyData[0].iMember = 0;
a_sMyData[l].iMember = 5;
a_sMyData[2]. iMember = 10;

/* Method 2 for initializing data */
for (i = 0; i < 3; ++i)
 a_sMyData[i].iMember = 5 * i;

/* Method 3 for initializing data */
i = 0;
p_sMyData = a_sMyData;
do
{
 p_sMyData->iMember = i;
 i +=5;
 ++p_sMyData;
} while (i < 10);

•Each of the methods does the
same thing.

•Initializes the iMember of the
a_sMyData array of structures.

•Which one contains the largest
number of instructions?

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Method #1: Reasonable amount of
instructions

#include <stdio.h>

struct sMyStruct
{
 int iMember;
};

int main()
{
 struct sMyStruct a_sMyData[3];
 struct sMyStruct *p_sMyData;
 int i;
 a_sMyData[0].iMember = 0;
 a_sMyData[1].iMember = 5;
 a_sMyData[2]. iMember = 10;

}

ASM dump with :
gcc test.c ; otool -tv a.out

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Method #3: Requires a lot more
instructions!

#include <stdio.h>

struct sMyStruct
{
 int iMember;
};

int main()
{
 struct sMyStruct a_sMyData[3];
 struct sMyStruct *p_sMyData;
 int i;

 i = 0;
 p_sMyData = a_sMyData;
 do
 {
 p_sMyData->iMember = i;
 i +=5;
 ++p_sMyData;
 } while (i < 10);

}

ASM dump with :
gcc test.c ; otool -tv a.out

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Consider using static variables instead
of variables on the stack

void vFixStructureCompact (struct sMyStruct *p_sMyData)
{
 static struct sMyStruct sLocalData;
 static int i, j, k;
 //Copy the struct in p_sMyData to sLocalData
 memcpy (&sLocalData, p_sMyData, sizeof sLocalData);

 !!Do all sorts of work in structure sLocalData, using
 !! i, j, and k as scratch variables.

 //Copy the data back to p_sMyData
 memcpy (p_sMyData, &sLocalData, sizeof sLocalData);
}

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Consider using char variables instead
of int variables

Every bit counts.

int i ;
struct sMyStruct sMyData[23];
(...)

for (i = 0; i < 23; ++i)
sMyData[i].charStructMember = -1 * i;

char ch;
struct sMyStruct sMyData[23];
(...)
for (ch = 0; ch < 23; ++ch)
sMyData[ch].charStructMember = -1 * ch;

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Save space by going old school

•If all else fails, you can usually save a lot of space by writing
your code in assembly language.

•Before doing this, try writing a few pieces of code in assembly
to get a feel for how much space you might save (and how
much work it will be to write and to maintain).

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Saving power

• Some embedded systems run on battery power, and for these
systems, battery life is often a big issue.

•The primary method for preserving battery power is to turn
off parts or all of the system whenever possible.

•Most embedded-system microprocessors have at least one
power-saving mode; many have several.

• The modes have names such as sleep mode, low-power mode,
idle mode, standby mode, and so on.

•A very common power-saving mode is one in which the
microprocessor stops executing instructions, stops any built-in
peripherals, and stops its clock circuit.

CPE 355 - Real Time Embedded Kernels - Spring ‘12
Nuno Alves (nalves@wne.edu), College of Engineering

Typical power saving modes

•Another typical power-saving mode is one in which the
microprocessor stops executing instructions but the on-board
peripherals continue to operate.

•Any interrupt starts the microprocessor up again.

•No special hardware is required

•Use this power-saving mode even while other things are going
on.

•For example, a built-in DMA channel can continue to send data
to a UART, the timers will continue to run,

