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Basic design using a real-time 
operating system 
Reference: Simon Chapter 8
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Now what?

• Over the next couple of classes we will discuss how to put all 
that we learned so far into useful designs for embedded-system 
software. 

• Assumption that your system has real time constraints.

• Be aware that embedded-system software design is complex and 
has as many exceptions as it has rules.
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Overview
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Overview

• It is harder to specify a real­time system than a desktop application. 

• "What must the system do?" must also answer questions such as 
"How fast must it do it?" 

• Example of real time systems:  bar-code scanner, nuclear reactor 
temperature measurement system.  

• You must know how critical each timing is. 
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Notions of criticality

• Critical path method (for project 
management).

• PERT chart for a project with five 
milestones (10 through 50) and six 
activities (A through F). 

• The project has two critical paths: 
activities B and C, or A, D, and F – 
giving a minimum project time of 7 
months with fast tracking. Activity E 
is sub-critical, and has a float of 1 
month.

We can allocate 
different groups 

on different tasks.
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Critical path

The critical path is the longest necessary path through a 
network of activities when respecting their interdependencies.

Project management Electrical circuit
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Hard and soft real-time systems

• It’s probably okay for the cordless bar-code scanner to 
respond on time in 99% of the cases and be slightly too 
slow the other 1 percent of the time. 

• However failure to respond quickly enough to reactor 
issues 1% of the time is unacceptable. 

• Systems with absolute deadlines, such as the nuclear 
reactor system, are called hard real-time systems. 

• Systems that demand good response but that allow some 
fudge in the deadlines are called soft real-time 
systems. 
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To design effectively, you must know 
something about the hardware!

• Suppose your system will receive data on a serial port at 9600 
bits (about 1000 characters) per second: 9600 baud is 9600 bps.

• Storing in memory each each individual received character 
causes an interrupt. 

• Software design must accommodate a serial-port interrupt 
routine that will execute about 1000 times each second. 

• How would you improve on this?
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We can use direct memory access 
(DMA)

• If the serial port hardware can copy the received characters into 
memory through a DMA channel.

• ...and your system has no need to look at the characters 
immediately when they arrive.

• Then you can dispense with that interrupt routine and the 
problems it will cause.
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What is direct memory access 
(DMA)?

DMA is a piece of circuitry that, without software assistance, can:

• Read data from an I/O device, such as a serial port or a 
network, and then write it into memory 

or 

• Read from memory and write its contents into an I/O device 

Caution: memory only has one set of address and data signals. 
The DMA must make sure that it is not driving those signals 
while the microprocessor is also driving them. 
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Using DMA: we want to transfer the 
data from the I/O into RAM

1.DMAREQ signal is asserted.

2.DMA circuit asserts BUSREQ 
to the microprocessor.

3.When microprocessor is ready 
to give up the bus, it asserts 
BUSACK.

4.DMA circuit puts address in the 
address bus.

5.DMAACK and WRITE/ are 
asserted.

6. I/O places data in the data bus.
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What’s next?

Now that data has been written 
to RAM, the DMA circuit 
releases:

• DMAACK

• Address bus

• BUSREQ

The microprocessor releases 
BUSACK and microprocessor 
execution resumes.



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Microprocessor speed

• You must have some feel for the microprocessor speed.

• Knowing which computations will take long enough to affect 
other deadlines is a necessary design consideration.

• "Can our microprocessor execute the serial-port interrupt 
routine 1000 times per second and still have any time left over 
for other processing?" is a question that needs an answer. 

• Unfortunately, only experience and experimentation can help you 
with this.
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Principles
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Interrupts are driving force of 
embedded systems

• Embedded systems commonly have nothing to do until something 
requires a response:

• Either the passage of time OR some external event.

• The driving force of embedded systems are interrupts:

‣External events generally cause interrupts.

‣We can make the passage of time cause interrupts (with 
hardware timers).
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Common design technique: system is 
commonly on the blocked state.

An embedded system design technique is to have RTOS tasks 
spend most of the time in the blocked state waiting for:

‣an interrupt routine

‣another task to send a message

‣another task to cause an event 

‣another task to free a semaphore

Any of these operations will tell the tasks that there is something 
to do. 
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Interrupts are fundamental

• When an interrupt occurs, the interrupt routine uses the RTOS 
services to signal one or more of the tasks.

• Each does its work and each may then signal other tasks. 

• Each interrupt can create a cascade of signals and task activity. 
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Simplified version of what happens 
inside a telegraph system

• When the system receives a 
network frame, the hardware 
interrupts. 

• A network frame is a data 
packet that includes frame 
synchronization that allows 
the receiver to detect the 
beginning and end of the 
packet in the stream of 
symbols or bits.
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DDP protocol task

• The interrupt routine resets 
the hardware and then passes 
a message containing the 
received frame to the DDP 
protocol task (outdated!).  

• Datagram Delivery Protocol 
(DDP) main responsibility is 
for socket-to-socket delivery 
of datagrams over an 
AppleTalk network.

• In simpler terms, its a program 
that routes data from point A 
to B.
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After the interrupt, DDP protocol is 
no longer blocked

• The DDP protocol task was 
blocked waiting for a message

• When this message arrives, 
the task wakes up and, among 
many other things...

• ... Determines if the frame was 
intended for the Telegraph or 
if it was sent to some other 
network station and received 
by mistake.
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Unblocking the ADSP protocol which 
then reads the data packet

• If the frame was intended for 
the Telegraph, the DDP 
protocol task sends a message 
containing the received frame 
to the ADSP protocol task. 

• This message unblocks the 
ADSP protocol task, which 
determines the contents of 
the received frame. 
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Unblocking the ADSP protocol which 
then reads the data packet

• If the frame contains print 
data...

• ...the ADSP protocol task 
sends a message containing 
the data to the serial-port 
task

• ...which sends the data to the 
serial port hardware and 
through it to the printer. 
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Unblocking the ADSP protocol which 
then reads the data packet

• If the frame contains a request 
for printer status.

• ... the ADSP protocol task 
constructs a response frame 
and sends it to the DDP 
protocol task to be sent on 
the network.
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Receiving serial data from the printer

• When the system receives 
serial data from the printer, 
the interrupt routine resets 
the hardware and forwards 
the data in a message to the 
serial port task. 

• If that data contains printer 
status, the serial port task 
forwards the status to the 
ADSP protocol task.
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Receiving serial data from the printer

• The ADSP protocol task 
stores the status and uses it 
when responding to later 
status requests from the 
network.

• Each time the system receives 
a network frame or serial 
port data, an interrupt routine 
sends a message to one of the 
tasks, which initiates a chain of 
events that eventually causes 
an appropriate response to 
the received data.



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

No interrupts

• When no frames or data are 
arriving, there are no 
interrupts, and the three tasks 
in the system remain idle, 
waiting to receive messages.
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Write short interrupt routines

• In general you will be better off if you write short interrupt 
routines rather than long ones. Why?

• First, since even the lowest-priority interrupt routine is executed 
in preference to the highest-priority task code, writing longer 
interrupt routines translates directly into slower task-code 
response. 

• Second, interrupt routines tend to be more bug-prone and 
harder to debug than task code.
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Events and deadlines

• Most events require various responses from your software: for 
example, the system must reset port hardware, save received 
data, reset the interrupt controller, analyze received data, 
formulate a response, and so on. 

• The deadlines for these responses may be quite different. 

• Although it may be necessary to reset the port hardware and 
interrupt controller and to save data immediately, the data 
analysis and the response are often not nearly as urgent. 
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System example
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Example

Suppose we are writing the software for a system with the 
following characteristics:

‣The system must respond to commands coming from a serial 
port. These, always end with a carriage return.

‣Commands arrive one at a time; the next command will not 
arrive until the system responds to the previous one.

‣The serial port hardware can only store one received character 
at a time, and characters may arrive quickly.

‣The system can respond to commands relatively slowly.
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Wretched way to do it: do all work 
inside an ISR

• Do all of the work (include processing the commands and 
sending a command reply) inside an interrupt routine that 
receives characters. 

• That interrupt routine will be long and complex and difficult to 
debug, and it will slow response for every operation the system 
does in task code.
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Still a bad way to do it: forward every 
character in a RTOS message

• Interrupt routine that simply forwards every character in an 
RTOS message to a command parsing task. 

• The interrupt routine will be short. 

• A practical disadvantage is that the interrupt routine will send a 
lot of messages to the command parsing task.

• Unfortunately putting messages onto an RTOS queue is not 
instantaneous.
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Possible design compromise

• Interrupt routine that saves the received characters in a buffer 
and watches for the carriage return that ends each command.

• When the carriage return arrives, the interrupt routine sends a 
single message to the command parsing task, which reads the 
characters out of the buffer.
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#define SIZEOF_CMD_BUFFER 200
char a_chCommandBuffer[SIZEOF_CMD_BUFFER];
#define MSG_EMPTY ((char *) 0) 
char *mboxCommand = MSG_EMPTY; 
#define MSG_C0MMAND_ARRIVED ((char *) 1)

void interrupt vGetCommandCharacter (void) 
{
  static char *p_chCommandBufferTail = a_chCommandBuffer; 
  int iError;
  *p_chCommandBufferTail = !!Read rec. character from hardware; 
  if (*p_chCommandBufferTail == '\r')
  sc_post (&mboxCommand, MSG_C0MMAND_ARRIVED, &iError);
  //Advance the tail pointer and wrap if necessary
  ++p_chCommandBufferTail;
  if (p_chCommandBufferTail==&a_chCommandBuffer[SIZEOF_CMD_BUFFER]) 
      p_chCommandBufferTail = a_chCommandBuffer;
  !!Reset the hardware as necessary.
}

void vInterpretCommandTask (void) 
{
   static char *p_chCommandBufferHead = a_chCommandBuffer; 
   int iError;
   while (TRUE) 
   {
     //Wait for the next command to arrive. 
     sc_pend (&mboxCommand, WAIT_F0REVER, &iError);
     //We have a command.
    !!Interpret the command at p_chCommandBufferHead
    !!Advance p_chCommandBuff'erHead past carriage return
   }
}

interrupt routine 
vGetCommandCharacter 
stores the incoming 
characters in 
a_chCommandBuffer and 
checks each incoming 
character for a carriage 
return. 

carriage return has 
arrived... so post that 
command into a mailbox.
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#define SIZEOF_CMD_BUFFER 200
char a_chCommandBuffer[SIZEOF_CMD_BUFFER];
#define MSG_EMPTY ((char *) 0) 
char *mboxCommand = MSG_EMPTY; 
#define MSG_C0MMAND_ARRIVED ((char *) 1)

void interrupt vGetCommandCharacter (void) 
{
  static char *p_chCommandBufferTail = a_chCommandBuffer; 
  int iError;
  *p_chCommandBufferTail = !!Read rec. character from hardware; 
  if (*p_chCommandBufferTail == '\r')
  sc_post (&mboxCommand, MSG_C0MMAND_ARRIVED, &iError);
  //Advance the tail pointer and wrap if necessary
  ++p_chCommandBufferTail;
  if (p_chCommandBufferTail==&a_chCommandBuffer[SIZEOF_CMD_BUFFER]) 
      p_chCommandBufferTail = a_chCommandBuffer;
  !!Reset the hardware as necessary.
}

void vInterpretCommandTask (void) 
{
   static char *p_chCommandBufferHead = a_chCommandBuffer; 
   int iError;
   while (TRUE) 
   {
     //Wait for the next command to arrive. 
     sc_pend (&mboxCommand, WAIT_F0REVER, &iError);
     //We have a command.
    !!Interpret the command at p_chCommandBufferHead
    !!Advance p_chCommandBuff'erHead past carriage return
   }
}

vlnterpretCommandTask, 
waits on the mailbox; 
when it receives a 
message, it reads the 
characters of the current 
command from 
a_chCommandBuffer 
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#define SIZEOF_CMD_BUFFER 200
char a_chCommandBuffer[SIZEOF_CMD_BUFFER];
#define MSG_EMPTY ((char *) 0) 
char *mboxCommand = MSG_EMPTY; 
#define MSG_C0MMAND_ARRIVED ((char *) 1)

void interrupt vGetCommandCharacter (void) 
{
  static char *p_chCommandBufferTail = a_chCommandBuffer; 
  int iError;
  *p_chCommandBufferTail = !!Read rec. character from hardware; 
  if (*p_chCommandBufferTail == '\r')
  sc_post (&mboxCommand, MSG_C0MMAND_ARRIVED, &iError);
  //Advance the tail pointer and wrap if necessary
  ++p_chCommandBufferTail;
  if (p_chCommandBufferTail==&a_chCommandBuffer[SIZEOF_CMD_BUFFER]) 
      p_chCommandBufferTail = a_chCommandBuffer;
  !!Reset the hardware as necessary.
}

void vInterpretCommandTask (void) 
{
   static char *p_chCommandBufferHead = a_chCommandBuffer; 
   int iError;
   while (TRUE) 
   {
     //Wait for the next command to arrive. 
     sc_pend (&mboxCommand, WAIT_F0REVER, &iError);
     //We have a command.
    !!Interpret the command at p_chCommandBufferHead
    !!Advance p_chCommandBuff'erHead past carriage return
   }
}

sc_post and sc_pend 
functions are non-
blocking from the 

VRTX system
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How many tasks?

• One of the first problems in an embedded-system design is to 
divide your system's work into RTOS tasks. 

• Obvious question is "Am I better off with more tasks or with 
fewer tasks?"

• What are the advantages and disadvantages of having more tasks?
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Advantages of having lots of tasks

• With more tasks you have better control of the relative 
response times of the different parts of your system's work. 

• With more tasks your system can be somewhat more 
modular. Using a separate task for each device allows for 
cleaner code. 

• With more tasks you can sometimes encapsulate data more 
effectively. Only the code in that task needs access to the 
variables.
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Disadvantages of having lots of tasks

• With more tasks you are likely to have more data shared 
among two or more tasks... so more microprocessor time is lost 
handling the semaphores. 

• With more tasks you are likely to have more requirements 
to pass messages from one task to another through pipes, 
mailboxes, queues, and so on. This will also translate into more 
microprocessor time and more chances for bugs. 

• Each task requires a stack; therefore, with more tasks you need 
more memory.



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Even more disadvantages of having 
more tasks

• Each time the RTOS switches tasks, a certain amount of 
microprocessor time evaporates saving the context of the 
task that is stopping and restoring the context of the task that is 
about to run. 

• More tasks probably means more calls to the RTOS. RTOS 
vendors promote their products by telling you how fast they can 
switch tasks, put messages into mailboxes, set events, and so on. 
Your system runs slower if it calls many RTOS functions

• ... Other things being equal, use as few tasks as you can; add more 
tasks to your design only for clear reasons. 
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You need tasks for priority

• Let's examine some situations in which it makes sense to add 
more tasks to your system design. 

• First, the obvious advantage of the RTOS architecture 
over the others is the improved control of task code 
response. 

• One obvious reason for having multiple tasks is to be able to 
assign higher priorities to parts of the work with tighter 
response time requirements.
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You need tasks for encapsulation

• It often makes sense to have a separate task to deal with 
hardware shared by different parts of the system. 

• For example, the printer‘s display is shared by buttons and the 
printer mechanism.

‣A single task that controls the hardware display can solve these 
problems. 

‣When other tasks in the system have information to display, 
they will send messages to the display task. 

‣The RTOS will ensure that messages sent to the display task are 
queued properly.
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A separate task helps control shared 
hardware
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Another encapsulation example

If various parts of a system need to store data in a flash memory, 
a single task responsible for dealing with the flash memory 
hardware can simplify your system.
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typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{ 
  //FLASH_READ or FLASH_WRITE
  FLASH_0P eFlash0p; 
  //Queue to respond to on reads
  mdt_q sQueueResponse;       
  //Sector of data
  int iSector;   
  //Data in sector
  BYTE a_byData[SECTOR_SIZE]; 
} FLASH_MSG;

void vInitFlash (void){
  //This function must be called before any other, 
  //preferably in the startup code.
  //Create a queue called 'FLASH' for input 
  //to this task 
  mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
  //Handle of flash task input queue
  mdt_q sQueueFlash; 
  //Message to the flash routine.
  FLASH_MSG sFlashMsg;      
  (...)
  //We need to write data to the flash 
  //Set up the data in the message structure
  !!Write data to sFlashMsg.a_byData 
  sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A; 
  sFlashMsg.eFlashOp = FLASH_WRITE;
  //Open queue and snd the message with priority 5 
  sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,    
                         NULL); 
   mq_send (sQueueFlash, (void *) &sFlashMsg, 
            sizeof sFlashMsg, 5); 
   mq_close (sQueueFlash);
   (...)
}

void vHandleFlashTask (void) 
{
 //Handle of our input queue
 mdt_q sQueueOurs; 
 //Message telling us what to do.
 FLASH_MSG sFlashMsg; 
 //Priority of received message
 int iMsgPriority; 
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE) 
 {
   //Get the next request. 
   mq_receive (sQueueOurs, (void *) &sFlashMsg, 
   sizeof sFlashMsg, &iMsgPriority);
   switch (sFlashMsg.eFlashOp) 
   {
     case FLASH_READ:
     !!Read data from flash sector sFlashMsg.iSector 
     !! into sFlashMsg.a_byData 
     //Send the data back on the queue specified
     //by the caller with the same priority as
     //the caller sent the message to us. 

     mq_send (sFlashMsg.sQueueResponse,
             (void *) &sFlashMsg, sizeof sFlashMsg,
             iMsgPriority); 
     break;

     case FLASH_WRITE:
     !!Write data to flash sector sFlashMsg.iSector 
     !!from sFlashMsg.a_byData
     //Wait until the flash recovers from writing. 
     nanosleep (!! Amount of time needed for flash); 
     break;
   }
 }
}
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typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{ 
  //FLASH_READ or FLASH_WRITE
  FLASH_0P eFlash0p; 
  //Queue to respond to on reads
  mdt_q sQueueResponse;       
  //Sector of data
  int iSector;   
  //Data in sector
  BYTE a_byData[SECTOR_SIZE]; 
} FLASH_MSG;

void vInitFlash (void){
  //This function must be called before any other, 
  //preferably in the startup code.
  //Create a queue called 'FLASH' for input 
  //to this task 
  mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
  //Handle of flash task input queue
  mdt_q sQueueFlash; 
  //Message to the flash routine.
  FLASH_MSG sFlashMsg;      
  (...)
  //We need to write data to the flash 
  //Set up the data in the message structure
  !!Write data to sFlashMsg.a_byData 
  sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A; 
  sFlashMsg.eFlashOp = FLASH_WRITE;
  //Open queue and snd the message with priority 5 
  sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,    
                         NULL); 
   mq_send (sQueueFlash, (void *) &sFlashMsg, 
            sizeof sFlashMsg, 5); 
   mq_close (sQueueFlash);
   (...)
}

void vHandleFlashTask (void) 
{
 //Handle of our input queue
 mdt_q sQueueOurs; 
 //Message telling us what to do.
 FLASH_MSG sFlashMsg; 
 //Priority of received message
 int iMsgPriority; 
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE) 
 {
   //Get the next request. 
   mq_receive (sQueueOurs, (void *) &sFlashMsg, 
   sizeof sFlashMsg, &iMsgPriority);
   switch (sFlashMsg.eFlashOp) 
   {
     case FLASH_READ:
     !!Read data from flash sector sFlashMsg.iSector 
     !! into sFlashMsg.a_byData 
     //Send the data back on the queue specified
     //by the caller with the same priority as
     //the caller sent the message to us. 

     mq_send (sFlashMsg.sQueueResponse,
             (void *) &sFlashMsg, sizeof sFlashMsg,
             iMsgPriority); 
     break;

     case FLASH_WRITE:
     !!Write data to flash sector sFlashMsg.iSector 
     !!from sFlashMsg.a_byData
     //Wait until the flash recovers from writing. 
     nanosleep (!! Amount of time needed for flash); 
     break;
   }
 }
}

• Any other task in the system 
wanting to write to the flash 
sends a message containing a 
FLASH_MSG structure to 
vHandleFlashTask. 
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typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{ 
  //FLASH_READ or FLASH_WRITE
  FLASH_0P eFlash0p; 
  //Queue to respond to on reads
  mdt_q sQueueResponse;       
  //Sector of data
  int iSector;   
  //Data in sector
  BYTE a_byData[SECTOR_SIZE]; 
} FLASH_MSG;

void vInitFlash (void){
  //This function must be called before any other, 
  //preferably in the startup code.
  //Create a queue called 'FLASH' for input 
  //to this task 
  mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
  //Handle of flash task input queue
  mdt_q sQueueFlash; 
  //Message to the flash routine.
  FLASH_MSG sFlashMsg;      
  (...)
  //We need to write data to the flash 
  //Set up the data in the message structure
  !!Write data to sFlashMsg.a_byData 
  sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A; 
  sFlashMsg.eFlashOp = FLASH_WRITE;
  //Open queue and snd the message with priority 5 
  sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,    
                         NULL); 
   mq_send (sQueueFlash, (void *) &sFlashMsg, 
            sizeof sFlashMsg, 5); 
   mq_close (sQueueFlash);
   (...)
}

void vHandleFlashTask (void) 
{
 //Handle of our input queue
 mdt_q sQueueOurs; 
 //Message telling us what to do.
 FLASH_MSG sFlashMsg; 
 //Priority of received message
 int iMsgPriority; 
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE) 
 {
   //Get the next request. 
   mq_receive (sQueueOurs, (void *) &sFlashMsg, 
   sizeof sFlashMsg, &iMsgPriority);
   switch (sFlashMsg.eFlashOp) 
   {
     case FLASH_READ:
     !!Read data from flash sector sFlashMsg.iSector 
     !! into sFlashMsg.a_byData 
     //Send the data back on the queue specified
     //by the caller with the same priority as
     //the caller sent the message to us. 

     mq_send (sFlashMsg.sQueueResponse,
             (void *) &sFlashMsg, sizeof sFlashMsg,
             iMsgPriority); 
     break;

     case FLASH_WRITE:
     !!Write data to flash sector sFlashMsg.iSector 
     !!from sFlashMsg.a_byData
     //Wait until the flash recovers from writing. 
     nanosleep (!! Amount of time needed for flash); 
     break;
   }
 }
}

• Any other task in the system 
wanting to write to the flash 
sends a message containing a 
FLASH_MSG structure to 
vHandleFlashTask. 
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typedef enum { FLASH_READ, FLASH_WRITE } FLASH_0P;

#define SECTOR_SIZE 256
typedef struct{ 
  //FLASH_READ or FLASH_WRITE
  FLASH_0P eFlash0p; 
  //Queue to respond to on reads
  mdt_q sQueueResponse;       
  //Sector of data
  int iSector;   
  //Data in sector
  BYTE a_byData[SECTOR_SIZE]; 
} FLASH_MSG;

void vInitFlash (void){
  //This function must be called before any other, 
  //preferably in the startup code.
  //Create a queue called 'FLASH' for input 
  //to this task 
  mq__open ("FLASH", O_CREAT, 0, NULL);
}
void vTaskA (void){
  //Handle of flash task input queue
  mdt_q sQueueFlash; 
  //Message to the flash routine.
  FLASH_MSG sFlashMsg;      
  (...)
  //We need to write data to the flash 
  //Set up the data in the message structure
  !!Write data to sFlashMsg.a_byData 
  sFlashMsg.iSector = FLASH_SECTOR_FOR_TASK_A; 
  sFlashMsg.eFlashOp = FLASH_WRITE;
  //Open queue and snd the message with priority 5 
  sQueueFlash = mq_open ("FLASH", O_WRONLY, 0,    
                         NULL); 
   mq_send (sQueueFlash, (void *) &sFlashMsg, 
            sizeof sFlashMsg, 5); 
   mq_close (sQueueFlash);
   (...)
}

void vHandleFlashTask (void) 
{
 //Handle of our input queue
 mdt_q sQueueOurs; 
 //Message telling us what to do.
 FLASH_MSG sFlashMsg; 
 //Priority of received message
 int iMsgPriority; 
 sQueueOurs = mg_open("FLASH", O_RDONLY, 0, NULL);

 while (TRUE) 
 {
   //Get the next request. 
   mq_receive (sQueueOurs, (void *) &sFlashMsg, 
   sizeof sFlashMsg, &iMsgPriority);
   switch (sFlashMsg.eFlashOp) 
   {
     case FLASH_READ:
     !!Read data from flash sector sFlashMsg.iSector 
     !! into sFlashMsg.a_byData 
     //Send the data back on the queue specified
     //by the caller with the same priority as
     //the caller sent the message to us. 

     mq_send (sFlashMsg.sQueueResponse,
             (void *) &sFlashMsg, sizeof sFlashMsg,
             iMsgPriority); 
     break;

     case FLASH_WRITE:
     !!Write data to flash sector sFlashMsg.iSector 
     !!from sFlashMsg.a_byData
     //Wait until the flash recovers from writing. 
     nanosleep (!! Amount of time needed for flash); 
     break;
   }
 }
}

• The vHandleFlashTask task 
copies the contents of a_byData 
in the FLASH_MSG structure 
into the sector indicated by 
iSector. 

• Any task wishing to read from 
the flash sends a message to 
vHandleFlashTask containing a 
FLASH_ MSG structure with 
eFlash0p set to FLASH_READ. 

• The vHandleFlashTask task will 
mail the data from the flash 
back to the queue specified by 
the sQueueResponse element. 
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Other tasks you might or might not 
need

• Good idea to have many small tasks, so 
that each task is simple. Keep in mind that 
the time your system spends switching 
tasks will eat into your throughput. 

• Good idea: Have separate tasks for work 
that needs to be done in response to 
separate stimulus. 

• However, if Task1 and Task2 share data or 
must communicate with one another, the 
problems that arise from that may make 
your code more complicated.

void task1 (void) 
{
  while (TRUE) 
    {
    !!Wait for stimulus 1 
    !!Deal with stimulus 1
  }
}

void task2 (void) 
{
  while (TRUE) 
    {
    !!Wait for stimulus 2 
    !!Deal with stimulus 2
    }
}
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Recommended task structure 

• You should use this task structure 
most of the time. 

• The task remains in an infinite loop, 
waiting for an RTOS signal that there 
is something for it to do. 

• That signal is most commonly in the 
form of a message from a queue.

• This task declares its own private 
data. 

•Advantages?

!!Private static data is declared here

void vTaskA (void) 
{
  !!More private data declared here,   
  !!either static or on the stack
  !!Initialization code, if needed.

  while (FOREVER) 
  {
    !!Wait for a system signal 
    !!...(event, queue message, etc.)
    switch (!!type of signal) 
    {
       case !! signal type 1:
       (...)
       break; 
       case !! signal type 2
       (...)
       break; 
       (...)
     }
  }
}
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Advantages of this recommended task 
structure 

• Advantages:

‣ The task blocks in only one place. 
When another task puts a request 
on this task's queue, this task is not 
off waiting for some other event 
that may or may not happen in a 
timely fashion. 

‣When there is nothing for this task 
to do, its input queue will be 
empty, and the task will block and 
use up no microprocessor time.

!!Private static data is declared here

void vTaskA (void) 
{
  !!More private data declared here,   
  !!either static or on the stack
  !!Initialization code, if needed.

  while (FOREVER) 
  {
    !!Wait for a system signal 
    !!...(event, queue message, etc.)
    switch (!!type of signal) 
    {
       case !! signal type 1:
       (...)
       break; 
       case !! signal type 2
       (...)
       break; 
       (...)
     }
  }
}
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More advantages of this 
recommended task structure 

• This task does not have public data 
that other tasks can share; other 
tasks that wish to see or change its 
private data write requests into the 
queue, and this task handles them. 

• There is no concern that other tasks 
using the data use semaphores 
properly; there is no shared data, and 
there are no semaphores.

!!Private static data is declared here

void vTaskA (void) 
{
  !!More private data declared here,   
  !!either static or on the stack
  !!Initialization code, if needed.

  while (FOREVER) 
  {
    !!Wait for a system signal 
    !!...(event, queue message, etc.)
    switch (!!type of signal) 
    {
       case !! signal type 1:
       (...)
       break; 
       case !! signal type 2
       (...)
       break; 
       (...)
     }
  }
}
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Avoid creating and destroying tasks

• Every RTOS allows you to create tasks as the system is starting. 

• Most RTOSs also allow you to create and destroy tasks while the 
system is running. 

• First, the functions that create and destroy tasks are typically the 
most time-consuming functions in the RTOS. 

• Second, whereas creating a task is a relatively reliable operation, it 
can be difficult to destroy a task without leaving little 
pieces lying around to cause bugs. 

• The alternative to creating and destroying tasks is to create all of 
the tasks you'll need at system startup. Later, if a task has nothing 
to do, it can block for as long as necessary on its input queue. 
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Timings of an RTOS on a 20 MHz Intel 
80386

Service Time
Get a semaphore 10 microseconds (μsec)

Release a semaphore 6—38 μsec
Switch tasks 17-35 μsec

Write to a queue 49-68 μsec
Read from a queue 12-38 μsec

Create a task 158 μsec
Destroy a task 36—57 μsec



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

Consider turning time-slicing off

• RTOS scheduler always runs the highest-priority ready task. 

• Consider two or more ready tasks have the same priority and no 
other ready task has a higher priority. RTOSs normally time-slice 
among those tasks, giving the microprocessor to each tasks for a 
short period of time 

• RTOSs also allow you to turn this option off.

• Time-slicing causes more task switches and therefore cuts 
throughput. 

• Unless you can pinpoint a reason that it will be useful in your 
system, you're probably better off without it. 
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Consider restricting your use of the 
RTOS

• Most RTOSs, even fairly small ones, offer more services than you 
are likely to need on any given project. 

• Many RTOSs allow you to configure them and to remove any 
services that you do not use 

• You can save memory space by figuring out a subset of the RTOS 
features that is sufficient for your system and using only that. 

• Many embedded-system designers prefer to put a shell around 
the RTOS and have all of the rest of their code call the shell 
rather than directly call the RTOS. It makes the code more 
portable from one RTOS to another, because only the shell needs 
be rewritten.
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An example: lets design an 
embedded system
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Tank monitoring system

•The purpose of this 
example is to show you 
the considerations that 
go into the process. 

•This system monitors up 
to eight underground 
tanks by reading 
thermometers and the 
levels of floats.
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Functionality of the tank monitoring 
system

•When the hardware has obtained 
a new float reading, it interrupts; 
the microprocessor can read the 
level. 

•The microprocessor can read the 
temperature in any tank at any 
time. 

•The system must pay special 
attention to tanks in which the 
level is rising rapidly and set off 
the alarm if such a tank gets close 
to full and the level is still rising. 
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Interface for the tank monitoring 
system

•The UI consists of a keypad, a liquid 
crystal display, and a thermal printer. 

•With the keypad, the user can tell the 
system to display various information 
such as the levels in the tanks 

•The system will override the user's 
display preference and show messages 
if it detects a leak or a overflow. 

•The system also has a connector to a 
loud alarm bell.

•The printer can accept one line of a 
report at a time. 
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Some initial questions

•When the float in one tank is rising rapidly, how often do we 
need to read it? Often.

•How quickly must the system respond when the user pushes a 
button? In no more than 0.1 second. 

•How fast does the printer print? Two or three lines per sec.

•How long does it take to calculate the quantity of gasoline in a 
tank? 4 or 5 seconds.

•What microprocessor will this system use? Cost constraints 
dictate that the system run on an 8-bit micro-controller. 
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More questions

•How long will it take for the microprocessor to calculate the 
number of gallons in a tank, given the float level and 
temperature? Figure it out before designing system.

•How long will it take for the microprocessor to recognize a 
leak or a potential overflow? Figure it out before designing system.

•Is it possible to read the level from more than one tank at 
once? No. In fact, trying to read the level from a second tank before 
a first read is complete will mess up your results. 

•How difficult is it for software to turn the alarm bell on and 
off? 
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Deciding to use an RTOS

• Decide whether an RTOS architecture is suitable. 

• For any hope of meeting the other deadlines discussed earlier, 
we'll have to suspend the calculation when other processing is 
necessary. 

• Can you build a system that does all this work in interrupt 
routines? Probably yes. 

• Will it be easy to build a system that does all this work in 
interrupt routines? Probably not. 

• Using an RTOS looks like a better solution in this case
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Divide the work of the system into 
individual tasks

•We need a level calculation task that takes as input the levels 
and temperatures in the tanks, calculates how much gasoline is 
in each tank, and perhaps detects leaks by looking at previous 
gasoline levels. 

•Since this takes 4 or 5 seconds for each tank, and since other 
things must happen more quickly than that, this is the classic 
RTOS situation calling for a separate, low-priority task. 

•One-task-per-tank plan creates code problems. 

•Disadvantage of the one-task-for-all-tanks is that the task must 
have code to figure out which tank to deal with next.
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Overflow-detection must be separate 
from the level-calculation

•Overflow detection must happen at a higher priority than the 
level calculation and leak detection processes; therefore, it 
must be in a separate task.

•Both the level calculation task and the overflow detection task 
must read from the float hardware; must make sure that they 
do not fight over it. 

•You could use a semaphore to ensure that only one task tries 
to read from the floats at one time. 

•You could set up a separate float hardware task and have the 
other tasks queue messages to that task requesting service.
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Button handling task

•Since some commands require button presses, so we need a 
state machine to keep track of the buttons already pressed. 

•Can be done in an interrupt routine... but it will be long and 
complicated. 

•Various tasks have messages to be displayed: For example, the 
level calculation task (when it detects a leak), the overflow 
detection task, and the button handling task. 

•We need a separate display task. For example, to handle the 
situation when the user presses a button right after a leak.
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A Semaphore can't protect the display 
properly

{
    (...)
    if (!!Leak detected) 
    {
        TakeSemaphore (SEMAPHORE_DISPLAY);
        !! Write "LEAK!!!" to display 
        ReleaseSemaphore (SEMAPHORE_DISPLAY);
     }
    (...)
}

void vButtonHandlingTask (void) 
{
   (...)
   if (!! Button just pressed necessitates a prompt) 
   {
       TakeSemaphore (SEMAPH0RE_DISPLAY);
       !!Write "Press next button" to display 
       ReleaseSemaphore (SEMAPHORE_DISPLAY);
   }
   (...)
} 
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Alarm bell

•The alarm bell is another piece of shared hardware. 

•The level calculation and overflow detection tasks can turn it 
on, and the button task can turn it OFF. 

•Turning the bell ON and OFF is atomic. 

•If the system discovers a second leak or an overflow right after 
the user turns OFF the bell, it should turn the bell back on 
again to call attention to the second problem. 

•It probably makes sense to let any task turn the bell ON or 
OFF directly. 

•A separate alarm bell task is not useful. 
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Printer

•Since the printer interrupts after printing each line, we can 
write an interrupt routine to send successive lines of each 
report to the printer. 

•First, if reports might take more than one-tenth of a second to 
format, then the formatting process must be in a task with 
lower priority than the button handling task so as not to 
interfere with the required button response. 

•Second, the complication of maintaining a print queue may 
make a separate task easier to deal with. 
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Starting the system

•Interrupt routines start sending signals through the system, 
telling tasks to do their work. 

•Whenever the user presses a button, the button hardware 
interrupts the microprocessor. 

•The button interrupt routine can send a message to the button 
handling task, which can interpret the commands and then 
forward messages on to the display task and the printer task as 
necessary.
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Shared data problems

•The gasoline levels data is shared by several tasks: the level 
calculation task (leak detection), the display task (show data to 
user), and the print formatting task (prints data)  

•Should we protect the data with a semaphore or should we 
create a separate task responsible for keeping the data 
consistent for the other tasks?

•"What is the longest that any one task will hold on to the 
semaphore?"   (about 1 ms)

•“Can every other task wait that long?”  (Yes)  

•So we do not need an additional task... 
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Tasks in the underground tank system 

Task Priority Reason for Creating This Task

Level 
calculation task

Low Other processing is much higher priority than this 
calculation, and this calculation is a microprocessor hog.

Overflow 
detection task

High This task determines whether there is an overflow; it is 
important that this task operate quickly.

Button handling 
task

High This task controls the state machine that operates the user 
interface, relieving the button interrupt routine of that 
complication, but still responding quickly.

Display task High Since various other tasks use the display, this task makes sure 
that they do not fight over it.

Print formatting 
task

Med Print formatting might take long enough that it interferes 
with the required response to the buttons. Also, it may be 
simpler to handle the print queue in a separate task.
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Encapsulating semaphores and 
queues 
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Review of semaphore problems

•Forgetting to take the semaphore: Semaphores only work if 
every task that accesses the shared data, uses the semaphore. 

•Forgetting to release the semaphore: If any task fails to release 
the semaphore, then every other task that ever uses the 
semaphore will sooner or later be blocked.

•Taking the wrong semaphore: If you are using multiple 
semaphores, then taking the wrong one is bad.

•Holding a semaphore for too long: Whenever one task takes a 
semaphore, every other task that subsequently wants that 
semaphore has to wait until the semaphore is released.
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Encapsulating semaphores 

•Most of semaphore bugs stem from undisciplined use. 

•For example ... allowing code in many different modules to use 
the same semaphore and hoping that they all use it correctly. 

•You can squash these bugs by hiding the semaphore and the 
data that it protects inside of a module, thereby encapsulating 
both. 
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Code that encapsulates a semaphore

/* File: tmrtask.c */
static long int lSecondsToday;

void vTimerTask (void) 
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_0F_DAY); 
 ++lSecondsToday;
 if (lSecondsToday == 60*60*24) lSecondsToday = 0L; 
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 (...)
}

long lSecondsSinceMidnight (void) 
{
 long lReturnValue;
 GetSemaphore (SEMAPHORE_TIME_0F_DAY); 
 lReturnValue = lSecondsToday; 
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY); 
 return (lReturnValue);
}

/* File: hacker.c */
long lSecondsSinceMidnight (void);

void vHackerTask (void) 
{
   (...)
   lDeadline = lSecondsSinceMidnight () + 1800L; 
   (...)
   if (lSecondsSinceMidnight () > 3600 * 12)
   (...)
}

/* File: junior.c */
long lSecondsSinceMidnight (void);

void vJuniorProgrammerTask (void) 
{
  long lTemp;
  (...)
  lTemp = lSecondsSinceMidnight (); 
  for (1 = lTemp; 1 < lTemp + 10; ++1)
  (...)
}

We don’t want tasks to access the variable lSecondsToday directly.
If you want the value of lSecondsToday you must use lSecondsSinceMidnight. 
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Code that encapsulates a semaphore

/* File: tmrtask.c */
static long int lSecondsToday;

void vTimerTask (void) 
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_0F_DAY); 
 ++lSecondsToday;
 if (lSecondsToday == 60*60*24) lSecondsToday = 0L; 
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 (...)
}

long lSecondsSinceMidnight (void) 
{
 long lReturnValue;
 GetSemaphore (SEMAPHORE_TIME_0F_DAY); 
 lReturnValue = lSecondsToday; 
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY); 
 return (lReturnValue);
}

/* File: hacker.c */
long lSecondsSinceMidnight (void);

void vHackerTask (void) 
{
   (...)
   lDeadline = lSecondsSinceMidnight () + 1800L; 
   (...)
   if (lSecondsSinceMidnight () > 3600 * 12)
   (...)
}

/* File: junior.c */
long lSecondsSinceMidnight (void);

void vJuniorProgrammerTask (void) 
{
  long lTemp;
  (...)
  lTemp = lSecondsSinceMidnight (); 
  for (1 = lTemp; 1 < lTemp + 10; ++1)
  (...)
}

Since lSecondsSinceMidnight uses the semaphore correctly, no bugs will be 
caused.
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C Review: literal constants

/* File: tmrtask.c */
static long int lSecondsToday;

void vTimerTask (void) 
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_0F_DAY); 
 ++lSecondsToday;
 if (lSecondsToday == 60*60*24) lSecondsToday = 0L; 
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY);
 (...)
}

long lSecondsSinceMidnight (void) 
{
 long lReturnValue;
 GetSemaphore (SEMAPHORE_TIME_0F_DAY); 
 lReturnValue = lSecondsToday; 
 GiveSemaphore (SEMAPHORE_TIME_0F_DAY); 
 return (lReturnValue);
}

/* File: hacker.c */
long lSecondsSinceMidnight (void);

void vHackerTask (void) 
{
   (...)
   lDeadline = lSecondsSinceMidnight () + 1800L; 
   (...)
   if (lSecondsSinceMidnight () > 3600 * 12)
   (...)
}

/* File: junior.c */
long lSecondsSinceMidnight (void);

void vJuniorProgrammerTask (void) 
{
  long lTemp;
  (...)
  lTemp = lSecondsSinceMidnight (); 
  for (1 = lTemp; 1 < lTemp + 10; ++1)
  (...)
}

You specify the value of a type of constant at compile time, so you don’t have to 
perform any time intensive (background) data-conversion during run-time.
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Wretched alternative: invitation to  
semaphore and shared data bugs

/* File: tmrtask.c */
long int lSecondsToday;

void vTimerTask (void) 
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_OF_DAY); 
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L; 
 GiveSemaphore (SEMAPH0RE_TIME_0F_DAY);
 (...)
}

/* File: junior.c */
extern long int lSecondsToday;
void vJuniorProgrammerTask (void) 
{
 (...)
 for (i=lSecondsToday; i<lSecondsToday+10; ++i)
 (...)
}

/* File: hacker.c */
extern long int 1SecondsToday;
void vHackerTask (void) 
{
 (...)
 iDeadline = lSecondsToday + 1800L;
 (...)
 if (lSecondsToday > 3600 * 12)
 (...)
}



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

C-Review: external variable

/* File: tmrtask.c */
long int lSecondsToday;

void vTimerTask (void) 
{
 (...)
 GetSemaphore (SEMAPHORE_TIME_OF_DAY); 
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L; 
 GiveSemaphore (SEMAPH0RE_TIME_0F_DAY);
 (...)
}

/* File: junior.c */
extern long int lSecondsToday;
void vJuniorProgrammerTask (void) 
{
 (...)
 for (i=lSecondsToday; i<lSecondsToday+10; ++i)
 (...)
}

/* File: hacker.c */
extern long int 1SecondsToday;
void vHackerTask (void) 
{
 (...)
 iDeadline = lSecondsToday + 1800L;
 (...)
 if (lSecondsToday > 3600 * 12)
 (...)
}

Using the shared variable without semaphore protection.
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External variable in C

•An external variable is a variable defined outside any function block. 

•On the other hand, a local (automatic) variable is a variable defined 
inside a function block.

•The extern keyword means "declare without defining".
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External variable in C

•The variable GlobalVariable is 
defined in File 1. In order to utilize 
the same variable in File 2, it must be 
declared.

•Regardless of the number of files, a 
global variable is only defined once. 

•If the program is in several source 
files, and a variable is defined in file1 
and used in file2 and file3, then 
extern declarations are needed in 
file2 and file3 to connect the 
occurrences of the variable.

Remember  the difference 
between definition and 
declaration.
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Hard Real-Time Scheduling 
Considerations
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Hard real-time scheduling 
considerations

•The obvious issue that arises in hard real-time systems is that 
you must somehow guarantee that the system will meet the 
hard deadlines. 

•The ability to meet hard deadlines comes from writing fast 
code 

•To write some frequently called subroutine in assembly 
language. 

•If you can characterize your tasks, then the studies can help 
you determine if your system will meet its deadlines. 
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Saving Memory Space 

•Embedded systems often have limited memory. 

•RTOS: each task needs memory space for its stack. 

•The first method for determining how much stack-space a task 
needs is to examine your code.

•The second method is experimental. Fill each stack with some 
recognizable data pattern at startup, run the system for a 
period of time  



CPE 355 -  Real Time Embedded Kernels - Spring ‘12
Nuno  Alves (nalves@wne.edu), College of Engineering

...A few ways to save code space

•Make sure that you aren't using two functions to do the same 
thing. 

•Check that your development tools aren't sabotaging you. 

•Configure your RTOS to contain only those functions that you 
need 

•Look at the assembly language listings created by your cross-
compiler to see if certain of your C statements translate into 
huge numbers of instructions. 
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Look at the assembly code...

struct sMyStruct a_sMyData[3]; 
struct sMyStruct *p_sMyData; 
int i;

/* Method 1 for initializing data */ 
a_sMyData[0].iMember = 0; 
a_sMyData[l].iMember = 5; 
a_sMyData[2]. iMember = 10;

/* Method 2 for initializing data */ 
for (i = 0; i < 3; ++i)
   a_sMyData[i].iMember = 5 * i;

/* Method 3 for initializing data */ 
i = 0;
p_sMyData = a_sMyData;
do
{
   p_sMyData->iMember = i; 
   i +=5; 
   ++p_sMyData; 
} while (i < 10);

•Each of the methods does the 
same thing.

•Initializes the iMember of the 
a_sMyData array of structures.

•Which one contains the largest 
number of instructions?
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Method #1: Reasonable amount of 
instructions

#include <stdio.h>

struct sMyStruct
{
 int iMember;
};

int main()
{
 struct sMyStruct a_sMyData[3]; 
 struct sMyStruct *p_sMyData; 
 int i;
 a_sMyData[0].iMember = 0; 
 a_sMyData[1].iMember = 5; 
 a_sMyData[2]. iMember = 10;

}

ASM dump with : 
gcc test.c ; otool -tv a.out 
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Method #3: Requires a lot more 
instructions!

#include <stdio.h>

struct sMyStruct
{
 int iMember;
};

int main()
{
 struct sMyStruct a_sMyData[3]; 
 struct sMyStruct *p_sMyData; 
 int i;

    i = 0;
    p_sMyData = a_sMyData;
    do
    {
       p_sMyData->iMember = i; 
       i +=5; 
       ++p_sMyData; 
    } while (i < 10);

}

ASM dump with : 
gcc test.c ; otool -tv a.out 
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Consider using static variables instead 
of variables on the stack

void vFixStructureCompact (struct sMyStruct *p_sMyData) 
{
   static struct sMyStruct sLocalData; 
   static int i, j, k;
   //Copy the struct in p_sMyData to sLocalData 
   memcpy (&sLocalData, p_sMyData, sizeof sLocalData);
   
   !!Do all sorts of work in structure sLocalData, using 
   !! i, j, and k as scratch variables.
   
   //Copy the data back to p_sMyData
   memcpy (p_sMyData, &sLocalData, sizeof sLocalData);
}
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Consider using char variables instead 
of int variables

Every bit counts.

int i ;
struct sMyStruct sMyData[23];
(...)

for (i = 0; i < 23; ++i)
sMyData[i].charStructMember = -1 * i;

char ch;
struct sMyStruct sMyData[23];
(...)
for (ch = 0; ch < 23; ++ch)
sMyData[ch].charStructMember = -1 * ch;
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Save space by going old school

•If all else fails, you can usually save a lot of space by writing 
your code in assembly language. 

•Before doing this, try writing a few pieces of code in assembly 
to get a feel for how much space you might save (and how 
much work it will be to write and to maintain).
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Saving power

• Some embedded systems run on battery power, and for these 
systems, battery life is often a big issue. 

•The primary method for preserving battery power is to turn 
off parts or all of the system whenever possible. 

•Most embedded-system microprocessors have at least one 
power-saving mode; many have several. 

• The modes have names such as sleep mode, low-power mode, 
idle mode, standby mode, and so on. 

•A very common power-saving mode is one in which the 
microprocessor stops executing instructions, stops any built-in 
peripherals, and stops its clock circuit. 
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Typical power saving modes

•Another typical power-saving mode is one in which the 
microprocessor stops executing instructions but the on-board 
peripherals continue to operate. 

•Any interrupt starts the microprocessor up again.

•No special hardware is required

•Use this power-saving mode even while other things are going 
on. 

•For example, a built-in DMA channel can continue to send data 
to a UART, the timers will continue to run,  


