CPE355 - Real time embedded kernels - Spring’| | WESTERN NEW ENGLAND WNE
UNIVERSITY

Prof. Nuno Alves (nalves@wne.edu), College of Engineering

Homework Assignment #13

Due date: | lam, Tuesday, March [3th 2012

Question #1 (20 points)
The following two routines are called by Tasks A, B and C, but they don’t work. How would you

fix the problems?

static int iRecordCount;

void increment_records (int iCount)
{
0SSemGet (SEMAPHORE_PLUS);
iRecordCount += iCount;

void decrement_records (int iCount)
{
iRecordCount -= iCount;
0SSemGive (SEMAPHORE_MINUS);

Question #2 (20 points)
Where do you need to take and release the semaphores in the following code to make the

function reentrant?

static int iValue;

int iFixValue (int iParm)
{
int iTemp;

iTemp = iValue;
iTemp += iParm * 17;

if (iTemp > 4922)
iTemp = iParm;
iValue = iTemp;

iParm = iTemp + 179;
if (iParm < 2000)
return 1;
else
return 0;

Last updated on March 7,2012 10:52 PM

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Question #3 (20 points)

For each of the following situations, discuss which of the three shared-data

protection mechanisms seems most likely to be best and explain why.

(a.) Task M and Task N share an int array, and each often must update many
elements in the array.

(b.) Task P shares a single char variable with one of the interrupt routines.

Question #4 (20 points)

Assume that the following code is the only code in the system that uses the
variable iSharedDeviceXData. The routine vGetDataFromDeviceX is an interrupt
routine. Now suppose that instead of disabling all interrupts in vTaskZ, as shown
below, we disable only the device X interrupt, allowing all other interrupts. Will
this still protect the iSharedDeviceXData variable? If not, why not? If so, what
are the advantages (if any) and disadvantages (if any) of doing this compared to
disabling all interrupts?

int iSharedDeviceXData;

void interrupt vGetDataFromDeviceX (void)

{
iSharedDeviceXData = /! Get data from device X hardware
!l reset hardware
}
void vTaskZ (void) /* Low priority task */
{
int iTemp;
while (FOREVER)
{
!ldisable interrupts
iTemp = iSharedDeviceXData;
Ilenable interrupts
!lcompute with iTemp
}
}

Last updated on March 7,2012 10:52 PM

Question #5 (20 points)
Consider this statement: “In a nonpreemptive RTOS, tasks cannot ‘interrupt’

one another; therefore there are no data-sharing problems among tasks.” Would
you agree with this?

Last updated on March 7,2012 10:52 PM

