
CPE355 - Real time embedded kernels - Spring’11

Prof. Nuno Alves (nalves@wne.edu), College of Engineering

Midterm #1

Date: 11am, Thursday, March 1st 2012

Question #1 - Pointers (30 points)

For the following declarations and statements,

// declarations
int i,j,k[10]={2,4,6,8,10,12,14,16,18,20};
int *ip;
char a,b,c[10]={11,12,13,14,15,16,17,18,19,20};
char *cp;
void *vp;

struct stst
{
 int i;
 char *p;
} x;

// assignment statements
ip = &k[4];
vp = ip;
cp = &c[0];
x.p = cp+3;
x.i = 27;

a) Evaluate the following expressions (if the expression is an error, indicate that with ”X”):

• *(ip+2) + c[3] ; _unknown, but code compiles___

•(*cp +1) ; _12___________________________

• *(ip) + 6 ; _16___________________________

• vp = &x ; ((st*)vp)->p ; _X____________________________

• *(ip-2) ; _6____________________________

b) Using a pointer struct stst *z; how would you update the member i of the structure

x?
z=&x ; (*x).i = <somevalue>

Last updated on February 28, 2012 1:30 PM

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Question #2 - Logical operators (20 points)

Evaluate the following C expressions:

#define A 0x33
#define B 0x20
#define C 0xB7

unsigned char a,b,c,d,e;

a = (A|B) & C;
b = ~(A & B);
c = A^C;
d = B<<3;
e = C | B | ~A;

Give answers in binary:

• a _________________

• b _________________

• c _________________

• d _________________

• e _________________

Last updated on February 28, 2012 1:30 PM

Question #3 - Typical interview questions (30 points)

Write very brief answers to the following questions:

• What is does it mean for a signal to have 30% duty cycle?
 It means that 30% of the time the signal is at a high-state.

• What is a universal gate? Give one example of a universal gate?

 It’s a type of gate than can be combined with itself to generate

any logic function. Both NAND and NOR gates are universal.

• What is the difference between a latch and a flip-flop?
 In a latch, an input gets propagated to an output when the

clock is either high or low. In a FF, the input only gets

propagated to an output at a clock edge (either rising, falling

or both).

• What is an watchdog timer and how does it work?

 Its a computer hardware or software timer. If it is not

restarted then the system will reboot. This is to prevent system

hangs.

• In Arduino, give an example of a non-maskable interrupt.

 Maskable interrupt means you can’t disable it. The reset button

is a good example.

• What is the difference between an interrupt request (IRQ) and interrupt service routine (ISR)?
 ISR is the code that will be executed whenever an IRQ is

triggered.

• Assuming we are working with 8 bit quantities, convert -1510 into base-2 using 2’s complement.
 111100012

• Convert 2510 into base-16.
 0x19

Last updated on February 28, 2012 1:30 PM

• What is a decoupling capacitor? When shall we use it?

 It’s a capacitor we add to the circuit to prevent sudden

voltage drops.

• How does the microprocessor know where to find the ISR?

 Depends on the architecture. Recent microprocessors normally

have the interrupt vector table at a well defined memory

location. The interrupt vector table contains the addresses

where the interrupt service routines are located.

• What is an atomic section of the code?

 It’s a section where interrupts cannot happen.

• When shall you use polling instead of an interrupt?
 When we want to use a simpler code implementation in which we

don’t to deal with shared data problems. Polling is normally a

bad idea.

• Draw the timing diagram that reads data from the following ROM cell.

• Write the truth table for the following component. What is this component called?

 This is a tri-state buffer.

Last updated on February 28, 2012 1:30 PM

• When interrupts are enabled what is the problem with this code?

static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{
 iTemperatures[0] = !! read data from hardware
 iTemperatures[1] = !! read data from hardware
}

void main (void) {
 int iTemp0, iTemp1;
 while (TRUE) {
 iTemp0 = iTemperatures[0];
 iTemp1 = iTemperatures[1];
 if (iTemp0 != iTemp1){ !! Set off howling alarm }
 }
}

 If an interrupt happens right after the line

 “iTemp0 = iTemperatures[0];”

Then we may have a different value for iTemp0 and iTemp1. This

is the most basic behavior for a shared data problem.

Last updated on February 28, 2012 1:30 PM

Question #4 - Interrupt latency (10 points)

• We have a system with 2 interrupts (intHIGH and intLOW) and 2 different task codes (taskA

and taskB).

• When taskA or taskB are running, interrupts are disabled.

• The interrupt intHIGH has the highest priority.

• It takes taskA 125μsec to run, while taskB takes 250μsec.

• The interrupt intHIGH takes 300μsec to run, while intLOW requires 150μsec.

• When intHIGH is triggered, it needs finish executing its associated routine within 650μsec.

a) Assuming that interrupt nesting is allowed, is it possible to implement this system?

b) Assuming that interrupt nesting is not allowed, is it possible to implement this system?

a) Yes. The worst case interrupt latency happens when taskB just
started running and intHIGH is triggered. So taskB needs to finish
first (250µsec) and then intHIGH will run (300µsec). The total
execution time is 550µsec which is well below the required 650µsec.

b) Yes. Nothing really changes from part a). Interrupt nesting is just
the ability of an interrupt to happen inside an interrupt.

Last updated on February 28, 2012 1:30 PM

Question #5 - Software architectures (10 points)

Complete the following table:

Priorities
available

Worst time
response for task

code

Stability of
response

when code
changes

Simplicity

Round-robin None. Sum of all task code. Poor. Very simple.

Round-robin
with

interrupts

Interrupt
routines in

priority order,
then all task
code with the
same priority.

Total of
execution time

for all task code
(plus execution

time for
interrupt
routines).

Good for
interrupt
routines.
Poor for

task code.

Must deal with
shared data

problems between
interrupt

routines and task
code.

Function
queue-

scheduling

Interrupt
routines in

priority order,
then all task

code in priority
order.

Execution time
for the longest
function (plus
execution time
for interrupt
routines).

Relatively
good.

Must deal with
shared data and

must write
function queue

code.

Real time
operating

system

Interrupt
routines in

priority order,
then all task

code in priority
order.

Zero (plus
execution time
for interrupt
routines).

Very good.

Most complex
(although much of
the complexity is
in the operating
system itself).

Last updated on February 28, 2012 1:30 PM

