CPE355 - Real time embedded kernels - Spring’| | WESTERN NEW ENGLAND WNE
UNIVERSITY

Prof. Nuno Alves (nalves@wne.edu), College of Engineering

Midterm Exam #2 - Solutions

Date: | |am, Thursday, April 26th 2012

Each question is worth 5 points. Partially correct questions are worth 2 points.

Embedded C

I) What is the difference between = and ==

i The symbol “=” is the assignment operator whereas “==" is the comparisoni
ioperator.]

2) Using the following code skeleton, complete the function that sorts an array of 5 elements
by reference.

void sort array(int array[], int nelements)

void sort (int array[], int nelements)
{

int 1i,3j=0;
int temp;

: for (i=0;i<nelements;i++) :
: for (j=0;j<nelements;j++) :
: if (arrayl[i]<arrayl[j])]
: { :
: temp=array[i]; :
: array([il=array[j]; ;
: array[j]l=temp; :

3. Consider the structure below. How can you assign the value 10 to the member i of the

structure xxx using *z?

Last updated on April 26,2012 12:25 PM

mailto:nalves@wne.edu
mailto:nalves@wne.edu

#include<stdio.h>

struct myStructure

X g
: int i; :
: char *p; :
P :
E int main () E
b 5
: struct myStructure xxx; :
: struct myStructure *z=&xxx; :
: //... something goes here :
bl :
*z.i = 10; or z->i=10; :

4. How do you de-reference the void pointer (pvoid) to extract its associated value? Print its

associated value.

#include<stdio.h>

int main ()

{ float floatValue=55.5;
void *pVoid; //declaring a void pointer
pVoid = &floatValue; // pVoid points to the address of intValue
//... one line is missing here

//... next line prints the floatValue through the
//de-referenced void pointer

: float *pFloat = (float*) (pVoid); :
] printf ("$f\n", *pFloat) ; :

v It is a pointer that points to a function.

Last updated on April 26,2012 12:25 PM

T T T T T

‘#include <stdio.h>

Efloat Plus (float a, float b) { return atb; }
Efloat Minus (float a, float b) { return a-b; }

woid fPTR example (float a, float b, float (*pt2Func) (float, float))

printf ("$f\n",pt2Func(a, b)) ;

int main ()
{

fPTR example (2, 5, &Minus);
fPTR example (2, 5, &Plus);

6. Write some code that will place the integer value 0X0034 into the absolute memory address
OxA3BS.

*a=0x0034;

-

a= (int *) OxA3B5; i

i Register variables are a special case of automatic variables. Automatic
wariables are allocated storage in the memory of the computer; however,
ifor most computers, accessing data in memory is considerably slower than
iprocessing in the CPU. By specifying a register variable, the programmer
isuggests the compiler that particular automatic variables should be
iallocated to CPU registers, if possible.

i const int abc=10;
: int *a=é&abc;
P o*a=11;

Last updated on April 26,2012 12:25 PM

10. Using the following structure, write a function that will count the number of elements of a
linked list.

i#include <stdio.h>
#include <stdlib.h>

struct Node
{

i int Data;

' struct Node *Next;
i} *Head;
i// You must complete this function that counts number of elements
'int length()

i

return (count) ;

}

‘int main(int argc, char *argvl[])
i

int 1=0;

//Set HEAD as NULL

Head=NULL;

addBeg (num) ; //this function has been declared somewhere else
printf (“Number of elements=%d\n”,length());

’

i// Counting number of elements in the List
iint length ()
o

struct Node *cur ptr;

int count=0;

cur ptr=Head;

{
cur ptr=cur ptr->Next;
count++;

}

E while (cur ptr != NULL)
! return(count) ;

i Features such as intertask communication, timer services, memory
‘management and events.

Last updated on April 26,2012 12:25 PM

[2. Each task has its own private context.What does this mean?

i It means each task includes their private register values, a program
Ecounter, and a stack. This data is not shared with other tasks in the

I4. Interrupt latency, footprint and context switching time are perhaps the most important

factors considered when a RTOS is being selected. Could you briefly describe them?

i Interrupt latency: the time it takes to process a given interrupt
ie Footprint: the size of the executable code generated after compilation

* Context switching time: the time is takes for tasks to switch between

i The processor will execute no more interrupt routines wuntil they are :
‘re-enabled. When interrupts are reenabled, they will sequentially be :
iprocessed by priority order. E

i It’s the situation whenever a higher priority task has to unnecessarily
iwait for a lower priority task to finish. This happens when the higher
Epriority task has to wait for a shared resource (e.g. a semaphore) to be
ireleased by a lower priority task that is currently running.

t In this type of scheduling once a task is in the running state, it

Edoesn’t leave that state until it is done, or until it has no further E

i
iresources to continue computation.
i

Last updated on April 26,2012 12:25 PM

19. What is a reentrant function?

Reentrant functions are functions that can be called by more than one E
itask and that will always work correctly, even if the RTOS switches from :

ione task to another in the middle of executing the function.

ETwo standard memory allocation C functions are malloc and free: real—timei
isystems often avoid these two functions because they are slow their :
lexecution times are unpredictable. Most RIOSs offer fast and predictable
ifunctions that allocate and deallocate memory. Malloc and calloc also :
icontribute to memory fragmentation issues.

Last updated on April 26,2012 12:25 PM

