Prof. Nuno Alves (<u>nalves@wne.edu</u>), College of Engineering

Exam instructions:

- 1. No exams will be graded if you violated any of the exam instructions.
- 2. Feel free to use your book or your class-notes, but you are **NOT** allowed to use any form of communication with any classmate.
- 3. There are two questions, and I only accept a report with 5 pages. Use the font Courier New for your report.
- 4. The first question must fit in two pages, with the first page containing the waveform and the second page containing the source-code.
- 5. The second question must fit in three pages, with the first page containing the waveform, the second page containing the source-code and the third page containing your test-bench.
- 6. Put these in a word document and email them to nalves@wne.edu. Label each question and make sure I am able to copy and paste your code into active HDL so I can simulate it.

Grading:

- 1. There are two questions, each worth 50 points. Full credit is awarded if the wave-form is for each question is flawless, and if you followed all the directions.
- 2. Points will be deducted from each question if there are any wave-form inconsistencies:

Directions were followed	Directions were not followed	Deduction
Close to the desired solutionCode compiles		10
Far from the desired solutionShows general understandingCode compiles	Close to the desired solutionCode compiles	20
Code does not compile Shows general understanding	Far from the desired solution Shows general understanding Code compiles	35
Code does not compile Shows very little understanding	Very far from desired solution regardless of code compilation	50

Question I - Create a circuit in VHDL that will implement the following functionality:

- There is one 4-bit data input 'A' that goes to both the shifter and the incrementer.
- The outputs of the shifter and incrementer are 4-bits wide, and 'F' is 4 bits.
- There is also a 3-bit control input S(2-0). S(1) and S(0) control the functions of the shifter and incrementer, as described below.
- S(2) controls the 4-wide 2:1 MUX that provides the output. If S(2) = 0 the shifter output goes to 'F'; if S(2) = 1 then incrementer output goes to 'F'.

The diagram below shows the data flow; the control signal connections are not shown. Test the circuit with the test-bench provided. You may NOT modify the test-bench, so make sure you use the appropriate signal names and signal data-types.

<u>Important:</u> Set all inputs/outputs on your wave-form to be displayed in binary, simulate your circuit for 80 ns and fit the entire waveform on the screen (use the fit-to-screen option).

S(1)	S(0)	Shifter function	Incrementer function
0	0	A shift right I bit	A + I
0	I	A shift left 2 bits	A - I
I	0	A (unchanged) A + 2	
I	I	Reverse order of bits *	High Impedance

^{*} Example: If A="IZ0X", the output of the shifter function should be "X0ZI".

This is the output you should get:

Question 2 - In question I, the size of the bus 'A' and 'F' were hardwired to 4 bits. Set the generic attribute to accommodate a bus size of 5 bits.

- Modify your source code from question q and make the input signal 'A' and the output signal 'F' truly generic. That is, ensure your program will work for an input/output bus of any size, using the **GENERIC** attribute.
- Set the generic attribute such that 'A' and 'F' both have a length of 5 bits.
- Modify the test-bench used in question I so that it will work with your generic implementation.
- In your test-bench you may change the input vectors for the signal 'A'.
- In your test-bench you may **NOT** modify the input vectors for the signal 'S'!

<u>Important:</u> Set all inputs/outputs on your wave-form to be displayed in binary, simulate your circuit for 80 ns and fit the entire waveform on the screen (use the fit-to-screen option).

This is one possible output you could get.

Grading worksheet

Question #1

Directions were followed	Directions were not followed	Deduction
Close to the desired solutionCode compiles		10
Far from the desired solutionShows general understandingCode compiles	Close to the desired solution Code compiles	20
Code does not compile Shows general understanding	Far from the desired solutionShows general understandingCode compiles	35
Code does not compile Shows very little understanding	Very far from desired solution regardless of code compilation	50

Question #2

Directions were followed	Directions were not followed	Deduction
Close to the desired solutionCode compiles		10
Far from the desired solutionShows general understandingCode compiles	Close to the desired solutionCode compiles	20
Code does not compile Shows general understanding	Far from the desired solutionShows general understandingCode compiles	35
Code does not compile Shows very little understanding	Very far from desired solution regardless of code compilation	50

Total score: