
CPE462 - VHDL: Simulation and Synthesis - Fall’11

Prof. Nuno Alves (nalves@wne.edu), College of Engineering

Homework Assignment #7

Due Date: Monday, October 10th 2011

Homework policy: If I see something unusual about your work, you can be sure I will ask

you about it. If you are unable to explain it to me why you chose some implementation method

I will have to consider your entire solution wrong. Now, what is my definition of “unusual

work”? Well, things like suspicious parts of code that may have been copied from a website or

chunks of your implementation that are very close to one of your colleagues. I really encourage

communication amongst yourselves, and I want you guys to have a good time learning while

doing these exercises... but please don't blindly copy code. If you really must, at least

acknowledge your sources.

1. In class we talked about setting up generic parameters in VHDL. Look at the following parity

generator code

entity parity_gen is
! generic (n: integer := 7);
! port (input : in bit_vector (n-1 downto 0);
! output : out bit_vector(n downto 0));
end! entity;

architecture myarch of parity_gen is
begin! ! !
! process(input)!
! variable temp1 : bit;
! variable temp2 : bit_vector (output'range);
! begin
! ! temp1:='0';
! ! for i in input'range loop
! ! ! temp1 := temp1 XOR input(i);
! ! ! temp2(i) := input(i);
! ! end loop;
! ! temp2(output'high):=temp1;
! ! output<=temp2;
! end process;
end architecture;!

a) Provide some code comments which explains exactly what every single line is doing.

b) Change the generic parameter n to have the value of 4, and create a test-bench file that will

test the circuit. Turn-in a printout of your code and a printout of the wave-forms.

Last updated on October 5, 2011 8:46 AM

mailto:nalves@wne.edu
mailto:nalves@wne.edu

2. The following exercises are based on the following signal declarations:

a) Practice on operators: fill in the blanks.

b) Practice in attributes: fill in the blanks.

Last updated on October 5, 2011 8:46 AM

c) Legal and illegal operations: Verify whether each of the operations below is legal or illegal.

Briefly justify your answers.

3. The following figure shows the top-level diagram of a generic m-by-n decoder. The circuit has

two inputs, sel (m bits) and ena (single bit), and one output, x (n bits). We assume that n is a

power of two, so m=log2(n). If ena=‘0’, then all bits of x should be high; otherwise, the output

bit selected by sel should be low, as illustrated in the truth table.

The ARCHITECTURE below is totally generic, for the only changes needed to operate with

different values of m and n are in the ENTITY (through sel, line 7, and x, line 8, respectively). In

Last updated on October 5, 2011 8:46 AM

this example, we have used m=3 and n=8. However, though this works fine, the use of GENERIC

would have made it clearer that m and n are indeed generic parameters.

The functionality of the encoder above can be verified in the simulation results. As can be seen,

all outputs are high, that is, x=‘‘11111111’’ (decimal 255), when ena=‘0’. After ena has been

asserted, only one output bit (that selected by sel) is turned low. For example, when

Last updated on October 5, 2011 8:46 AM

sel=‘‘000’’ (decimal 0), x=‘‘11111110’’ (decimal 254); when sel = ‘‘001’’ (decimal 1),

x=‘‘11111101’’ (decimal 253); when sel=‘‘010’’ (decimal 2), x=‘‘11111011’’ (decimal 251); and so

on.

Questions:

(a) Create an identical replication of the waveform presented above in Active HDL.

(b) In order for this design to operate with another vector size, two values must be changed: the

range of sel (line 7) and the range of x (line 8). We want now to transform this design in a

truly generic one. In order to do so, introduce a GENERIC statement in the ENTITY,

specifying the number of bits of sel (say, n=3), then replace the upper range limits of sel and x

by an attribute which is a function of n. Crete a test-bench and simulate your circuit in order

to verify its functionality. Turn in a printout of the modified code, the test-bench and the

output waveform.

(c) In the original design, a binary-to-integer conversion was implemented (lines 20–26). This

conversion could be avoided if sel had been declared as an INTEGER. Modify the code,

declaring sel as an INTEGER. The code should remain truly generic, so the range of sel must

be specified in terms of n. Crete a test-bench and simulate your circuit in order to verify its

functionality. Turn in a printout of the modified code, the test-bench and the output

waveform.

4. List all operators, attributes and generics in the following code:

entity parity_det is
! generic (n: integer := 7);
! port (input : in bit_vector (n downto 0);
! output : out bit);
end entity;

architecture myarch of parity_det is
begin! ! !
! process(input)!
! variable temp : bit;
! begin
! ! temp:='0';
! ! for i in input'range loop
! ! ! temp := temp XOR input(i);
! ! end loop;
! ! output<=temp;
! end process;
end architecture;!

Last updated on October 5, 2011 8:46 AM

