CPE462 - VHDL: Simulation and Synthesis - Fall'II

Prof. Nuno Alves (<u>nalves@wne.edu</u>), College of Engineering

HW #11 Solutions

Question #1:


```
library ieee;
use ieee.std logic 1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity compare is
        port (a,b : in std_logic_vector(7 downto 0);
        sel : in std_logic;
        x1,x2,x3 : out std_logic);
end entity;
architecture myarch of compare is
        signal unsigned_a,unsigned_b : unsigned (7 downto 0);
        signal signed_a, signed_b : signed (7 downto 0);
        signal unsigned x1, unsigned x2, unsigned x3 : std logic;
        signal signed x1, signed x2, signed x3 : std logic;
        signal integer_a, integer_b : integer;
begin
        unsigned_a <= unsigned(a);
        unsigned_b <= unsigned(b);
        signed a <= signed(a);
        signed_b <= signed(b);</pre>
        -- is a and b equal?
        unsigned_x2 <= '1' when unsigned_a=unsigned_b else
                 '0';
        signed_x2 <= '1' when signed_a=signed_b else</pre>
                '0';
        -- is a>b
        unsigned_x1 <= '1' when unsigned_a>unsigned_b else
                '0';
        signed_x1 <= '1' when signed_a>signed_b else
                '0';
        -- is a<b
        unsigned_x3 <= '1' when unsigned_a<unsigned_b else
        signed_x3 <= '1' when signed_a<signed_b else</pre>
                  '0';
        --route the appropriate signal to an the output using a mux
        x1 <= unsigned x1 when sel='0' else
                signed_x1;
        x2 <= unsigned_x2 when sel='0' else</pre>
                signed x2;
        x3 <= unsigned x3 when sel='0' else
                signed x3;
end architecture;
```