CPE 462 VHDL: Simulation and Synthesis

Topic #01 - Introduction to reconfigurable computing

Goals of this class

I. Learn principles of reconfigurable computing

- 2. Master the principles of VHDL and understand its features and limitations
- 3. Acquire hands-on experience with synthesis tools, reconfigurable hardware and simulators
- 4. Strengthen engineering skills through tangible class projects that can be shown to potential employers

Methods for executing computations: software

Software programmed microprocessors

Advantages:

Software is flexible to change

Disadvantages:

- Performance can suffer if clock is not fast
- Fixed instruction set by hardware

Methods for executing computations: ASIC

- Straight in hardware
- Application Specific
 Integrated Circuits

Advantages:

Extremely fast

Disadvantages:

- Algorithms can't be modified once printed
- Expensive

Methods for executing computations: reconfigurable computing

- Fills the gap between Hardware and Software
- Individual logic gates can programed

Advantages:

- Higher performance than software
- More flexible than ASIC hardware

Disadvantages:

- Programing is not trivial
- Labor intensive development

Reconfigurable computing approach

- I. You have a program / algorithm that you need to run in hardware
- 2. You develop that program using logic gates
- 3. You load these logic gates into a special piece of hardware
- 4. If you are unhappy with the end results, you can always modify your circuit and reload it into the same board

Hardware description languages

We can model / simulate a piece of hardware before it is created physically!

- Unpractical to manually draw each gate in a circuit
- A hardware description language (HDL) is any language which describes the circuit's operation
- Verilog, VHDL, SystemC, Matlab Simulink, LabView, MyHDL

Defining characteristics:

- Explicit notion of time (e.g. Wait 2 ms before sending signal)
- Notations for expressing concurrency

CPE 462 - VHDL: Simulation and Synthesis - Fall 'I I Nuno Alves (nalves@wne.edu), College of Engineering

Reconfigurable devices

- In a reconfigurable device you configure the behavior of each logic block
- An FPGA is an example of a reconfigurable device
- FPGAs will be our VHDL prototype platform
- The logic blocks are connected by a set of routing resources that are also programmable
- Custom logic circuits can be mapped to the reconfigurable fabric

Block logic element

- Designs need to be decomposed and mapped to logic blocks
- FPGAs might contain non-reconfigurable elements that interface to the logic blocks

Configuring FPGAs

- FPGAs can be dynamically reprogrammed before or during runtime
- Slow to reprogram... order of seconds!
- Full or partial reconfiguration

Why so slow to configure?

How does an FPGA look like?

There are several packaging types

Туре	Dual Inline Package DIP (70's)	Quad Flat Package QFP (80's)	Pin Grid Array PGA (90's)	Ball Grid Array BGA (00's)
+	 Easy to solder, handle and replace Extremely mature technology (cheap) 	- More available I/O pins than DIP	 More available I/O pins than QFP Often mounted with through hole methods 	High densityGood heatconductionLow inductance
-	Low pin densitySignal propagates"slowly" through pins	- No socketing or hole mounting (only soldering)	- Long leads means loss of signal integrity	Expensive testing equipmentUnreliable test sockets

CPE 462 - VHDL: Simulation and Synthesis - Fall 'I I Nuno Alves (nalves@wne.edu), College of Engineering

FPGAs are mostly BGA packages

FPGA are chips with lots of I/O

With prototype boards we can fully utilize those I/O ports

Each solder point in a BGA has a well defined I/O functionality

CPE 462 - VHDL: Simulation and Synthesis - Fall 'I I Nuno Alves (nalves@wne.edu), College of Engineering

What circuits can you implement on reconfigurable hardware?

... Besides size constraints you can deploy pretty much any circuit that has been done with standard logic gates.

- These folks implemented an arduino compatible microprocessor in an FPGA
- Why? You can add extrafunctionality (such as extra I/O pins) to an existing micro-processor.

http://gadgetforge.gadgetfactory.net/gf/project/wiringide/

Embedded RAM and multipliers

- Problem: "Expensive" to implement memory with configurable logic blocks
- Solution: Add hard chunks of RAM blocks.
 - Position/size vary depending on the FPGA device.
- <u>Problem</u>: Multipliers are inherently slow if cascaded
- Solution: Add hard-wired multiplier blocks

Higher performance than software

... is obtained in many ways. For example, with spatial based computing.

Goal: I have an algorithm/program I want to run really fast.

- I) I try to extract parallelism (or concurrency) from the instructions as much as possible
- 2) Then, I implement the algorithm as hardware.

Spacial based execution

More flexible than ASIC

- Low/med volume IC production
- Early prototyping and logic emulation
- Accelerating algorithms in reconfigurable computing environments
 - Reconfigurable functional units within a host processor (custom instructions)
 - 2. Reconfigurable units used as coprocessors
 - Reconfigurable units that are accessed through external I/O or a network
- Legacy Computing

Why reconfigurable computing is more relevant these days?

- There is a demand for high-performance, data processing, computation. E.g. Gene sequencing and financial market analysis
- Why are general-purpose processors not meeting the demand?
 - I. Single thread performance is no longer improving (individual core frequencies do not increase due to thermal problems)
 - 2. Consume large amount of power
- Why reconfigurable architectures could meet the computational demand?
 - Can process large streams of data directly in hardware
 - Inexpensive and consume little power

Tangible examples of reconfigurable computing applications

Fast password recovery

"Using FPGA Clusters for Fast Password Recovery" - Pico Computing, Inc. (www.picocomputing.com) - 2009 white-paper

- They take password cracking algorithms that crack SHA-1,WPA and WEP.
- Convert code into logic gates and optimize it
- Deploy the same code across a grid of reconfigurable hardware

Load protected data in memory and start process

Recovery Algorithm	PC with Core™2 Duo	Pico SC3 with 77 FPGAs	Speed Factor
FileVault	41 minutes	2 seconds	1230X
WPA ¹	3 hours	11 seconds	981X
WEP ²	42 days (est.)	13 minutes	4,620X

Accurate debug and simulation of ASIC designs

- Behavioral: Entire circuit in terms of functionality (algorithm)
- Dataflow: Breaks circuits into blocks and modules
- Gate: Modules are decomposed into logic gates.

There is a lot of overlap between the design flow for an ASIC and an FPGA.

To some extent all that can be done in ASIC can be done on an FPGA.

High frequency trading (HFT)

- •HFT is an investment technique that gets in and out of positions very quickly, while making tiny amounts on each transaction (≈ few cents)
- •If you trade a lot, and faster than your competitors, all those cents add up
- •For example, we can reduce a 30µs risk calculation on a PC, into a 3µs calculation on a FPGA
- •FPGAs are embedded into network cards to reduce any latency

	Standard 10GE Network card	Low Latency 10GE Network Card	FPGA	ASIC
Latency	20 micros + application processing	5 micros + application processing	3-5 micros	Sub-micro
Ease of Deployment	Trivial	Kernel driver installation	Retraining of programmers	Specialist
Man Years Effort to Develop	Week	Weeks	2-3 man years	2-3 man years
Elapsed Time	Week	Weeks	6 months -year	Year +
Costs	\$50 - \$200	\$500+	\$100 - \$20,000	\$1million+

Re-creating an I 980's Apple II+

http://www.cs.columbia.edu/~sedwards/apple2fpga/

The point, aside from entertainment, was to illustrate the power (or rather, low power) of modern FPGAs. (...) What made Steve Jobs his first million can now be a class project for my embedded systems class.

Re-create game consoles (NES)

http://cegt201.bradley.edu/projgrad/proj2006/

- Dan Leach's Master's project at Bradley University
- NES is a Legacy System, still used but no longer manufactured: if one piece breaks, you are in trouble
- I year project with lots of detective work!
- Source code in VHDL is provided

Re-create game consoles (Genesis)

http://hackaday.com/2010/07/16/sega-genesis-cloned-with-an-fpga/

- This fellow managed to re-implement a SEGA Genesis with an old FGPA board
- The onboard push buttons are used as the controller with VGA for the display
- Unfortunately source code is not provided
- For other game consoles and more info, check: http://www.fpgaarcade.com/

What's the point of resurrecting legacy systems?

With many NES and Genesis emulators available, what is the advantage of re-creating these systems in hardware?

In other words why would you want an FPGA implementation of a legacy system?

- Replace aging, malfunctioning hardware
- Reduce power consumption by replacing a system
- Reduce the overall cost of a larger, older system
- Reduce component size and thus system size for use in smaller areas
- Safe-guard against counterfeit parts!

Counterfeit parts

- "Counterfeit Electronic Parts", White paper @ Trilateral Safety and Mission Assurance Conference (2008)
- http://www.hq.nasa.gov/office/codeq/trismac/ apr08/day2/hughitt_NASA_HQ.pdf

Shoddy counterfeits

CPE 462 - VHDL: Simulation and Synthesis - Fall 'I I Nuno Alves (nalves@wne.edu), College of Engineering

Sophisticated counterfeiting industry

The packaging mark (outside label) does not match internal die markings!

Hardware acceleration with GPUs

FPGAs vs GPUs

FPGA

- Custom chip which eliminates inefficiencies of Von Neumann execution models.
- All programming languages are hardware based.

GPU

- HW board with high memory bandwidth and allows thousands of hardware threads.
- Flexible and "easy" to program with high level languages which abstract hardware.
- NVIDIA's CUDA, AMD's CAL are new language development APIs.

- Both extremely parallel architectures whose algorithmic speedup is based on reduction steps.
- **(Left)** FPGA with a cascade of adders of depth of log(N).
- (**Right**) Number of working threads reduces in half in each iteration of a GPU implementation of a reduce which requires log(N) iterations.

CPE 462 - VHDL: Simulation and Synthesis - Fall 'I I Nuno Alves (nalves@wne.edu), College of Engineering

Pro's and con's

	FPGA	GPU
Development time	Long	Short
Synchronize tasks	Easy.We can insert hardware barriers.	Hard. API only allows synchronization of all threads.
Logic operations	Logic operations Bitwise operations: add, shift & permute done in 1 cycle. (DES algorithm)	
Communication Overhead	Reconfiguration takes considerable amount of time.	Uses off-chip device memory. PCI-Express bus.

