
CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 462
VHDL: Simulation and Synthesis

Topic #04 - a) Basic synthesizable data-types

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

BIT (and BIT_VECTOR)

• There are two logic levels: (‘0’, ‘1’)

• Defined in Package standard of library std (no need to declare it)

SIGNAL x: BIT;
-- x is declared as a one-digit signal
-- of type BIT.

SIGNAL y: BIT_VECTOR (3 DOWNTO 0);
-- y is a 4-bit vector,
-- with the leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 TO 7);
-- w is an 8-bit vector,
-- with the rightmost bit being the MSB.

Declaration examples
x <= '1';
-- x is a single-bit signal,
-- whose value is '1'. Notice that single
-- quotes (' ') are used for a single bit.

y <= "0111";
-- y is a 4-bit signal (as specified above),
-- whose value is "0111"
-- (MSB='0'). Notice that double quotes (" ")
-- are used for vectors.

w <= "01110001";
-- w is an 8-bit signal, whose value is
-- "01110001" (MSB='1').

Assignment examples

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

BIT usage

• We’ve seen this before

• We take two input bits (0/1)
and we AND them together

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

BIT_VECTOR usage

entity main_block is

! port (x : out bit_vector (3 downto 0));

end main_block;

architecture myarch of main_block is

signal a : bit_vector(3 downto 0);

signal b : bit_vector(3 downto 0);

begin

! a(0) <= '1';

! a(1) <= '1';

! a(2) <= '0';

! a(3) <= '0';

! -- this is the same as

! --a <= "0011";

! b <= "1111";

! x <= a AND b;!

end myarch;

• This entity+architecture has no
inputs and a single output

• I declare two internal signals a&b.
Think of signals as wires...

• I can manually specify the values for
these signals ONLY because they
are not inputs to my entity

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

STD_LOGIC (and
STD_LOGIC_VECTOR)

• STD_LOGIC (and
STD_LOGIC_VECTOR): 8-valued logic
system introduced in the IEEE 1164
standard

• There are several logic levels (not just
‘0’ and ‘1’)

• Only some logic levels are synthesizable
(can be deployed in hardware)

• The ones that are not synthesizable are
only intended for simulation

• We will focus mainly on the
synthesizable logic levels

Logic Level Synthesizable?

X’ Forcing Unknown (synthesizable unknown)

0’ Forcing Low (synthesizable logic ‘1’)

1’ Forcing High (synthesizable logic ‘0’)

Z’ High impedance
(synthesizable tri-state

buffer)

W’ Weak unknown (simulation only)

L’ Weak low (simulation only)

H’ Weak high (simulation only)

–’ Don’t care (simulation only)

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Start of minor detour

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

What is a Tri-state Buffer?

Minor digression... what is the purpose of buffers in real-designs?

• To artificially create some delay

• To increase current that a gate is feeding to other devices

This is how a tri-sate buffer looks like
outin

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Purpose of adding buffers

• This AND gate has a fanout of 4
• If each of the four devices gets equal current,
then each device gets 1/4 of the initial current

• By adding a buffer, I am
boosting current to each device

Important: Why should I care about ensuring each gate gets a decent amount of
current? You can’t really accurately measure voltage levels if there is no current!

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

What is High Impedance (Z)?

We can define a wire as follows:

• A piece of conductive material that allows electron flow

• A wire allows a 1-bit signal to be sent on it

• At most one device can write to a wire

• A device can write either a ‘0’ or ‘1’ on the wire

• Devices can read from the wire memory hard-disk

cpu

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Wire may connect multiple devices

• When a device writes a ‘1’ or ‘0’, in reality, it is asserting a voltage,
such as 0 volts for ‘0’ and 5 volts for ‘1’

• If two devices attempt to write a ‘0’ and ‘1’, then the wire is
assumed to have a garbage value

• A device attempting to read from the wire, in such a situation,
may read ‘0's’ sometimes and read ‘1's’ at other times

• We want to avoid two devices writing at the same time

• More than one device can read a value from a wire

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

High impedance state

• If no devices write to the wire, then the wire has value Z, which
stands for high impedance

• High impedance means that it is neither 0 nor 1

• If no device is writing to a wire, then reading from a wire gets an
unknown value (either 0 or 1, but nothing predictable)

• A wire has no memory. That is, if you write a 1 to the wire, the
wire does not store the value. The device must continuously
assert a 1

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Wire truth-table

Device #1 Device #2 Output

Write 0 Write 0 0

Write 0 Write 1 Garbage

Write 1 Write 0 Garbage

Write 1 Write 1 1

Write nothing
(Z)

Write 0 0

Write nothing
(Z)

Write 1 1

Write nothing
(Z)

Write nothing
(Z)

Nothing (Z)

Garbage as in... sometimes we read
a ‘1’ other times we read a ‘0’.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Tri-state Buffer is a control valve

• When the control input is not active, the output is "Z"

• The "valve" is open, and no electrical current flows through

• Thus, even if x is 0 or 1, that value does not flow through

c in out

0 0 Z

0 1 Z

1 0 0

1 1 1

outin

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Why tri-state buffers?

• A common way for many devices to
communicate with one another is on
a bus

• That a bus should only have one
device writing to it, although it can
have many devices reading from it

• Since many devices always produce
output (such as registers) and these
devices are hooked to a bus, we need
a way to control what gets on the
bus, and what doesn't.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Tri-state buffers vs MUX

• Who cares? Why don’t I replace
these three state buffers with a
MUX?

• With a MUX we're guaranteed only
one device makes it to the bus.

• What if we don’t want any devices to
make it to the bus?

• One solution is to add an enable
input to a MUX. Only when the
enable is active, the output is selected
from one of the inputs.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

End of minor detour

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

STD_LOGIC_VECTOR usage

library ieee;

use ieee.std_logic_1164.all;

entity main_block is

! port (x : out std_logic_vector(5 downto 0));

end main_block;

architecture myarch of main_block is

signal b : std_logic_vector(5 downto 0):= "0101ZZ";

signal c : std_logic_vector(5 downto 0):= "0XX110";

begin

! x <= b AND c;

end myarch;

Since b and c are internal
wires I force their initial

values this way

In order to use
STD_LOGIC_VECTOR or
STD_LOGIC you MUST

add this library

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

STD_LOGIC_VECTOR

library ieee;

use ieee.std_logic_1164.all;

entity main_block is

! port (x : out std_logic_vector(5 downto 0));

end main_block;

architecture myarch of main_block is

signal b : std_logic_vector(5 downto 0):= "0101ZZ";

signal c : std_logic_vector(5 downto 0):= "0XX110";

begin

! x <= b AND c;

end myarch;

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

STD_LOGIC_VECTOR

library ieee;

use ieee.std_logic_1164.all;

entity main_block is

! port (x : out std_logic_vector(5 downto 0));

end main_block;

architecture myarch of main_block is

signal b : std_logic_vector(5 downto 0):= "0101ZZ";

signal c : std_logic_vector(5 downto 0):= "0XX110";

begin

! x <= b OR c;

end myarch;

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Boolean logic with unknowns (X)

A B A and B A or B A xor B

0 X 0 X X

1 X X 1 X

If A=0 and B=X
A AND B is always 0,
because the value of B
can never alter the result

If A=0 and B=X
0 AND 0 = 0
0 AND 1 = 0

0 OR 0 = 0
0 OR 1 = 1
If A=1 and B=X
1 AND 0 = 0
1 AND 1 = 1

1 OR 0 = 1
1 OR 1 = 1

X can be 0 or 1

If A=1 and B=X
A OR B is always1,
because the value of B can
never alter the result

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Boolean logic with high impedance (Z)

If A=0 and B=Z
0 AND 0 = 0
0 AND 1 = 0
0 AND neither = 0

0 OR 0 = 0
0 OR 1 = 1
0 OR neither = 0

A B A and B A or B A xor B

0 Z 0 X X

1 Z

Z can be 0 or 1 or neither

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Boolean logic with high impedance (Z)

If A=1 and B=Z
1 AND 0 = 0
1 AND 1 = 1
1 AND neither = 1

1 OR 0 = 1
1 OR 1 = 1
1 OR neither = 1

A B A and B A or B A xor B

0 Z 0 X X

1 Z X 1 X

Z can be 0 or 1 or neither

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Other synthesizable VHDL data types

• BOOLEAN: True, False

• INTEGER: 32-bit integers (from -2,147,483,647 to +2,147,483,647)

• NATURAL: Non-negative integers (from 0 to +2,147,483,647)

• SIGNED and UNSIGNED: data types defined in the std_logic_arith package
of the ieee library. They have the appearance of STD_LOGIC_VECTOR, but
accept arithmetic operations, which are typical of INTEGER data types

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Assignment examples

x0 <= '0'; bit, std_logic, or std_ulogic value '0'

x1 <= "00011111";
bit_vector, std_logic_vector, std_ulogic_vector,
signed, or unsigned

x4 <= B"101111" binary representation of decimal 47

x5 <= O"57" octal representation of decimal 47

x6 <= X"2F" hexadecimal representation of decimal 47

n <= 1200; integer

m <= 1_200; integer, underscore allowed

IF ready THEN... Boolean, executed if ready=TRUE

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Full code examples

library ieee;
use ieee.std_logic_1164.all;

entity main_block is
end main_block;

architecture myarch of main_block is
! signal x0 : std_logic :='0';
! signal x5 : std_logic_vector(5 downto 0):= O"57";
! signal x6 : std_logic_vector(7 downto 0):= X"2F";
! signal n : integer := 1200;!
! signal m : integer := 1_200;
! signal ready : boolean := true;
begin

end myarch;

• Useless entity, but
exemplifies how we can
declare internal signals
with some initial values.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Full code examples

library ieee;
use ieee.std_logic_1164.all;

entity main_block is
end main_block;

architecture myarch of main_block is
! signal x0 : std_logic;
! signal x5 : std_logic_vector(5 downto 0);
! signal x6 : std_logic_vector(7 downto 0);
! signal n : integer;!
! signal m : integer;
! signal ready : boolean;
begin
 !x0 <= '0';
! x5 <= O"57";
! x6 <= X"2F";
! n <= 1200;!
! m <= 1_200;
! ready <= true;
end myarch;

• Same outcome as the
previous slide, but signals
are initialized inside the
architecture begin/end
block.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Legal or Illegal?

A good way to confirm
these, is to try to compile
this code in active HDL.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Practice Exercises

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Exercise #1- Legal or Illegal
Assignments?

z <= "11111" & "000";

x(2) <= a;

b <= a;

y(5 TO 7) <= z(6 DOWNTO 0);

y(0) <= x(0);

y <= ('1','1','1','1','1','1','0','Z');

x <= "11111110";

z <= y;

b <= v(3);

y(2 DOWNTO 0) <= z(6 DOWNTO 4);

x <= y;

z(7) <= x(5);

1) Look at these signals... Which
are the legal assignments? Why?

Not sure about some of these?
Use Active HDL to check.

& means append!

7

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Exercise #2- What is the difference
between these two implementations

Draw the inferred circuit from each code snippet.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

