CPE 462
VHDL: Simulation and Synthesis

Topic #04 - a) Basic synthesizable data-types

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

BIT (and BIT_VECTOR)

* There are two logic levels: (‘0’,°I’)

* Defined in Package standard of library std (no need to declare it)

Declaration examples Assighment examples

x <= "'1";

-- X 1is a single-bit signal,

-- whose value is 'l'. Notice that single
—- quotes (' ') are used for a single bit.

SIGNAL x: BIT;
—- x 1s declared as a one-digit signal
-- of type BIT.

SIGNAL y: BIT VECTOR (3 DOWNTO 0);
-- y is a 4-bit vector,
-- with the leftmost bit being the MSB.

y <= "0111";

—-— y 1s a 4-bit signal (as specified above),
-- whose value is "0111"

-— (MSB='0"'). Notice that double quotes (" ")
-- are used for vectors.

SIGNAL w: BIT_VECTOR (0 TO 7);
-- w is an 8-bit vector,

-- with the rightmost bit being the MSB.
w <= "01110001";

-—- w 1s an 8-bit signal, whose value 1is
-- "01110001" (MsB='1l").

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

})—x

ENTITY nand gate IS
PORT (a, b : IN BIT; * We take two Input bits (O/|)

x : OUT BIT); and we AND them together

END nand gate;

e We've seen this before

ARCHITECTURE myarch OF nand gate IS
BEGIN

X <= a NAND b;
END myarch;

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

BIT VECTOR usage

* This entity+architecture has no
inputs and a single output

entity main block is
port (x : out bit vector (3 downto 0));

end main block;

* | declare two internal signals a&b.
Think of signals as wires...

architecture myarch of main block is
signal a : bit vector(3 downto 0);

signal b : bit vector(3 downto 0);

* | can manually specify the values for
these signals ONLY because they
are not inputs to my entity

Name Shi... o200 0 o4 0 B0 B0 10
100 ns

- E 3
roa(3)
ra(2)
wra(1)
- a(0)

+ b

begin
a(0) <= '1";
a(l) <= '1"';
a(2) <= '0';
a(3) <= '0';
—-- this is the same as
--a <= "0011";

b <= "1111";
X <= a AND b;

+ O w

end myarch;

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

STD_LOGIC (and
STD _LOGIC _VECTOR)

e STD LOGIC (and N T
STD_LOGIC_VECTOR): 8-valued logic | e st Ak
system introduced in the |IEEE | 164 X’ Forcing Unknown (synthesizable unknown)
standard

0’ Forcing Low (synthesizable logic ‘I’)

* There are several logic levels (not just
‘0’ and ‘I’)

|’ Forcing High (synthesizable logic ‘0’)

(synthesizable tri-state

Z’ High impedance buffer)

* Only some logic levels are synthesizable
(can be deployed In hal"dware) W’ Weak unknown (simulation only)

* The ones that are not synthesizable are L' Weak low (simulation only)
only intended for simulation

H’ Weak high (simulation only)

* We will focus mainly on the
synthesizable logic levels

— Don’t care (simulation only)

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Start of minor detour

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

What is a Tri-state Buffer?

C

This is how a tri-sate buffer looks like
in out

Minor digression... what is the purpose of buffers in real-designs?
* To artificially create some delay

* To increase current that a gate is feeding to other devices

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Purpose of adding buffers

* This AND gate has a fanout of 4

* |f each of the four devices gets equal current,
then each device gets 1/4 of the initial current

D1

D2 * By adding a buffer, | am
boosting current to each device

D3

D4

Important:Why should | care about ensuring each gate gets a decent amount of
current! You can’t really accurately measure voltage levels if there is no current!

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

What is High Impedance (Z)?

We can define a wire as follows:
* A piece of conductive material that allows electron flow
* A wire allows a |-bit signal to be sent on it
e At most one device can write to a wire
e A device can write either a‘0’ or ‘|’ on the wire

* Devices can read from the wire memory

hard-disk
e

et 1 []

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Wire may connect multiple devices

* When a device writes a‘l’ or ‘0’, in reality, it is asserting a voltage,
such as 0 volts for ‘0’ and 5 volts for ‘I’

* |f two devices attempt to write a‘0’ and ‘I’, then the wire is
assumed to have a garbage value

* A device attempting to read from the wire, in such a situation,
may read ‘0's’ sometimes and read ‘l's’ at other times

* We want to avoid two devices writing at the same time

* More than one device can read a value from a wire
D1 D2 D3 D4

et 1 []

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

High impedance state

* [f no devices write to the wire, then the wire has value Z, which
stands for high impedance

* High impedance means that it is neither O nor |

* |[f no device is writing to a wire, then reading from a wire gets an
unknown value (either 0 or |, but nothing predictable)

* A wire has no memory. That is, if you write a | to the wire, the
wire does not store the value. The device must continuously
assert a |

D1 D2| D3| |D4

et 1 []

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Wire truth-table

Device #| | Device #2 Output

Write 0 Write 0

Write 0 Write | Garbage D1

Write | Write 0 Garbage l T T T
Wire

Write | Write |

Garbage as in... sometimes we read

Write(zn)othing Write 0 a‘l’ other times we read a ‘0’.

Write nothing

(4)

Write nothing | Write nothing

(4) (£)

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Write |

Nothing (Z)

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Tri-state Buffer is a control valve

* When the control input is not active, the output is "Z"
* The "valve" is open, and no electrical current flows through

* Thus, even if x is 0 or |, that value does not flow through

C

In Aigout

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Why tri-state buffers?

* A common way for many devices to
communicate with one another is on
a bus

* That a bus should only have one
device writing to it, although it can
have many devices reading from it

* Since many devices always produce
output (such as registers) and these
devices are hooked to a bus, we need
a way to control what gets on the
bus, and what doesn't.

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

WESTERN NEW ENGLAND
UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Tri-state buffers vs MUX

* Who cares! Why don’t | replace
these three state buffers with a
MUX?

* With a MUX we're guaranteed only
one device makes it to the bus.

* What if we don’t want any devices to
make it to the bus!?

* One solution is to add an enable
input to a MUX. Only when the
enable is active, the output is selected
from one of the inputs.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

End of minor detour

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

STD LOGIC VECTOR usage

In order to use library ieee;
STD_LOG'C_VECTOR orjuse ieee.std logic 1164.all;

STD_LOGIC you MUST
add this library

entity main block is
port (x : out std logic vector (5 downto 0));

end main block;

architecture myarch of main block is

Since b and C are internal/ signal b : std logic vector(5 downto 0):= "0101ZZ";
. e e e signal ¢ : std logic vector(5 downto 0):= "0XX110";

wires | force their initial _~7

values this way

begin
X <= b AND c;

end myarch;

CPE 462 - VHDL: Simulation and Synthesis - Fall ' | WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

mailto:nalves@wne.edu
mailto:nalves@wne.edu

STD LOGIC VECTOR

MName

_]U'b

ar b(5)

ar b(4)

r b(3)

2]

& b(1)

ar b(0)

_MC

r c(5)

w i)

aroc(3)

2]

(1)

ar c(0)

...-D:.:

© x(5)

© x[4]

© x(3)

© x(2)

library ieee;

use leee.std logic 1164.all;

entity main block is
port (X out std logic vector (5 downto 0));

end main block;

architecture myarch of main block is
"0101z2Z";
"0XX110";

signal b : std logic vector(5 downto 0):
signal c std logic vector(5 downto 0):
begin

x <= b AND c;

end myarch;

(1) iX ﬁ:

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

WESTERN NEW ENGLAND

mailto:nalves@wne.edu
mailto:nalves@wne.edu

STD LOGIC VECTOR

Name

_erb

5]
4]
ar b(3)
r b(2)
" b(1)
ar b(0)

library ieee;

use leee.std logic 1164.all;

entity main block is

. port (x : out std logic vector (5 downto 0));

m cf9)
m cld)
rc(3)
wroc(2)
(1)

ar c(0)

end main block;

architecture myarch of main block is
signal b : std logic vector(5 downto 0):= "0101zz";
signal ¢ : std logic vector(5 downto 0):= "0XX110";

begin
x <= b OR c;

end myarch;

=

© 45) 0

© y(4) i1

© y(3) ¥
1
1
¥

© %2
® x(1)
© »(0]

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY WNE

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Boolean logic with unknowns (X)

XcanbeOor i

If A=0 and B=X
OANDO=0
OAND | =0 X

A and B AorB A xor B

0OORO=0
OOR | = | X X X
If A=1 and B=X
| AND 0 =0
| AND | = |

If A=0 and B=X If A=1 and B=X
A AND B is always 0, A OR B is alwaysl,
. because the value of B because the value of B can
| ORO0 =1
|OR | = | can never alter the result never alter the result

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Boolean logic with high impedance (Z)

Z can be 0 or | or neither

If A=0 and B=Z A and B A or B
OANDO=0
OAND I =0
0 AND neither =0 X

OOR0=0
OOR | =1
0 OR neither =0

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND ME
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Boolean logic with high impedance (Z)

Z can be 0 or | or neither

If A=1 and B=Z
| AND 0=0
| AND | = |
| AND neither = |

A and B A or B

| OR0 =1
| OR | = |
| OR neither = |

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND ME
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Other synthesizable VHDL data types

* BOOLEAN:True, False
* INTEGER: 32-bit integers (from -2,147,483,647 to +2,147,483,647)
* NATURAL: Non-negative integers (from 0 to +2,147,483,647)

* SIGNED and UNSIGNED: data types defined in the std logic_arith package
of the ieee library. They have the appearance of STD_LOGIC VECTOR, but
accept arithmetic operations, which are typical of INTEGER data types

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Assignment examples

'0'; bit, std logic, or std ulogic value '0'

bit vector, std logic vector, std ulogic vector,

<= "00011111"; . :
signed, or unsigned

<= B"101111" binary representation of decimal 47

x5 <= 0"57" octal representation of decimal 47

X6 <= X"2F" hexadecimal representation of decimal 47

n <= 1200; integer

m <=1 200; integer, underscore allowed

IF ready THEN... Boolean, executed if ready=TRUE

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Full code examples

library ieee;
use ieee.std logic 1164.all;

entity main block 1is
end main block;

* Useless entity, but
exemplifies how we can
declare internal signals
with some initial values.

architecture myarch of main block is
signal x0 : std logic :='0"';
signal x5 : std logic vector(5 downto 0):=
signal x6 : std logic vector(7 downto 0):
signal n : integer := 1200;
signal m : integer := 1 200;
signal ready : boolean := true;

begin

end myarch;

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Full code examples

library ieee;
use ieee.std logic 1164.all;

entity main block is
end main block;

architecture myarch of main block is
signal x0 : std logic;
signal x5 : std logic vector(5 downto 0);
signal x6 : std logic vector(7 downto 0);
signal n : integer;
signal m : integer;
signal ready : boolean;
begin
x0 <= '0"';
x5 <= 0"57";
X6 <= X"2F":
n <= 1200;
m <=1 200;
ready <= true;
end myarch;

e Same outcome as the
previous slide, but signals
are initialized inside the
architecture begin/end
block.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Legal or lllegal?

A good way to confirm
BIT;) .
BIT VECTOR(7 DOWNTO 0); these, is to try to compile

STD LOGIC; this code in active HDL.
STD LOGIC VECTOR(7 DOWNTO
INTEGER RANGE 0 TO 255;

legal (same scalar type: BIT)

legal (same scalar type: BIT)

legal (same scalar type: STD LOGIC)
legal (same scalar type: STD LOGIC)
illegal (type mismatch: BIT x STD LOGIC)

illegal (type mismatch: BIT VECTOR X
STD _LOGIC VECTOR)

illegal (type mismatch: INTEGER x BIT VECTOR)
illegal (type mismatch: INTEGER X
STD_LOGIC VECTOR)

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Practice Exercises

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Exercise #1- Legal or lllegal
Assignments!

& means append!

1) Look at these signals... Which z <= "11111" & "000";
are the legal assighments? Why? x(2) <= a;

b <= a;

SIGNAL a: STD LOGIC;
SIGNAL b: BIT;
SIGNAL x: byte;
SIGNAL y: STD LOGIC VECTOR (7 DOWNTO 0); v(0) <= x(0);
SIGNAL v: BIT VECTOR (3 DOWNTO 0);
SIGNAL z: STD LOGIC _VECTOR (: '/ DOWNTO 0); y <= (¢'¢t','12",'2',"1','1'",'1",'0",'2");

y(5 TO 7) <= z(6 DOWNTO 0);

Not sure about some of these? x <= "11111110";
Use Active HDL to check. z <= y;

b <= v(3);

y(2 DOWNTO 0) <= z(6 DOWNTO 4);

X<=y;

z(7) <= x(5);

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Exercise #2- VWWhat is the difference
between these two implementations

ENTITY and2 IS ENTITY and2 IS
PORT (a, b: IN BIT; PORT (a, b: IN BIT VECTOR (0 TO 3);
x: OUT BIT); x: OUT BIT VECTOR (0 TO 3));
END and2; END and2;

ARCHITECTURE and2 OF and2 IS ARCHITECTURE and2 OF and2 IS
BEGIN BEGIN

X <= a AND b; X <= a AND b;
END and2; END and2;

Draw the inferred circuit from each code snippet.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

