
CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 462
VHDL: Simulation and Synthesis

Topic #05 - a) WHEN statements

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Concurrent code

• We finished the basic foundations of VHDL, now we focus on the
design (code) itself.

• VHDL code can be concurrent (parallel) or sequential. First we
will discuss concurrent code.

• Concurrent code can be constructed with:

• WHEN and GENERATE statements

• Operators (AND, NOT, +, *, sll, etc.)

• BLOCK

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Concurrent versus sequential logic

• Combinational logic is that in which the output of the
circuit depends solely on the current inputs.

• The system requires no memory and can be
implemented using conventional logic gates.

• Sequential logic is defined as that in which the output
does depend on previous inputs.

• Storage elements are required, which are connected to
the combinational logic block through a feedback loop.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Common mistake

• Not every circuit that has storage elements (flip-
flops) is sequential.

• For example a in a RAM cell the storage elements
appear in a forward path rather than in a
feedback loop.

• The memory-read operation depends only on the
address vector presently applied to the RAM
input, with the retrieved value having nothing to
do with previous memory accesses.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Concurrent versus sequential code

• VHDL code is inherently concurrent
(parallel).

• Only statements placed inside a PROCESS,
FUNCTION, or PROCEDURE are
sequential.

• Within these blocks the execution is
sequential, however the block, is concurrent
with any other (external) statements.

• Concurrent code is also called dataflow
code.

entity main_block is

! port (clk, a, b : in bit);

end main_block;

architecture myarch of main_block is

signal x,y,z : bit;

begin

! x <= a AND b;

y <= a XOR b;

process (clk)

begin

y <= a OR b;

end process

end architecture;

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example

• Consider a code with three concurrent statements (stat1, stat2,
stat3).

• Any of the these alternatives will render the same physical circuit

• Since the order does not matter, purely concurrent code can not
be used to implement synchronous circuits (only exception is a
GUARDED BLOCK).

• In general we can only build combinational logic circuits with
concurrent code. To obtain sequential logic circuits, sequential
code must be used.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Concurrent code outline

In summary, in concurrent code the following can be used:

• Operators

• The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN)

• The GENERATE statement

• The BLOCK statement

Important: We haven’t studied these, but WHEN and
GENERATE can only be used outside PROCESSES, FUNCTIONS,
or PROCEDURES.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Concurrent code with operators

• We’ve seen this before.

• It’s a 4-input, one bit per input
multiplexer done using only
operators.

• The output must be equal to the
input selected by the selection
bits, s1-s0.

• Not a very user friendly
implementation!

4-to-1 MUX

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

WHEN (simple)

WHEN is one of the fundamental concurrent statements.

It appears in two forms: simple and selected

Let’s start with the syntax for simple WHEN:

this is obvious not the
complete VHDL code

(ie : entity and
architecture are

missing)

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Three forms of WHEN value

Another important aspect related to the WHEN statement is
that the ‘‘WHEN value’’ shown in the syntax above can indeed
take up three forms:

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

4-to-1 MUX using WHEN (simple)

• Much simpler than the previous
implementation with logic
operators.

• The output will be identical

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

WHEN (selected)

WHEN with the selected form is very similar to the simple WHEN.

Here is its syntax:

UNAFFECTED is
a very useful

keyword

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

4-to-1 MUX using WHEN (selected)

• The form for simple or selected WHEN, are very similar and will yield
the same outcome.

WHEN (simple) WHEN (selected)

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Replacing sel (input) with INTEGER

WHEN (selected)WHEN (simple)

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Another example: tri-state buffer

• This is another example that
illustrates the use of WHEN.

• The 3-state buffer must
provide output = input when
ena (enable) is low, or output
= ‘‘ZZZZZZZZ’’ (high
impedance) otherwise.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Another example : decoder with with
simple WHEN

• We assume that n is a power of
two, so m=log2(n)

• For simplicity, lets assign n=3

• One and only one input bit is
expected to be high at a time,
whose address must be encoded
at the output

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Another example : decoder with
selected WHEN

• We assume that n is a power of
two, so m=log2(n)

• For simplicity, lets assign n=3

• One and only one input bit is
expected to be high at a time,
whose address must be encoded
at the output

mailto:nalves@wne.edu
mailto:nalves@wne.edu

