CPE 462
VHDL: Simulation and Synthesis

Topic #05 - a) WHEN statements

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

Concurrent code

* We finished the basic foundations of VHDL, how we focus on the
design (code) itself.

* VHDL code can be concurrent (parallel) or sequential. First we
will discuss concurrent code.

e Concurrent code can be constructed with:

* WHEN and GENERATE statements
e Operators (AND, NOT, +, * sll, etc.)
e BLOCK

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Concurrent versus sequential logic

* Combinational logic is that in which the output of the
circuit depends solely on the current inputs. _.{
input

Combinational
Logic

* The system requires no memory and can be
implemented using conventional logic gates.

Combinational [CUtPut

Logic

* Sequential logic is defined as that in which the output
does depend on previous inputs. _"

. . present
* Storage elements are required, which are connected to st I: Storage ;l

Elements

the combinational logic block through a feedback loop.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Common mistake

* Not every circuit that has storage elements (flip-
flops) is sequential.

* For example a in a RAM cell the storage elements -
. . “ombinational
appear in a forward path rather than in a Logic
feedback loop.] f

Storage

* The memory-read operation depends only on the Elements
address vector presently applied to the RAM
input, with the retrieved value having nothing to
do with previous memory accesses.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Concurrent versus sequential code

* VHDL code is inherently concurrent
(parallel).

* Only statements placed inside a PROCESS,

FUNCTION, or PROCEDURE are
sequential.

* Within these blocks the execution is
sequential, however the block, is concurrent
with any other (external) statements.

e Concurrent code is also called dataflow
code.

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

entity main block is

port (clk, a, b : in bit);

end main block;

architecture myarch of main block is

signal x,y,z : bit;

begin

X <= a AND b; D —

y <= a XOR b;

+ process (clk)
: begin
y <= a OR bj !

end process

end architecture;

WESTERN NEW ENGLAND
UNIVERSITY

 —

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example

* Consider a code with three concurrent statements (statl, stat2,
stat3).

statl stat3 statl
stat2 = stat2 = stat3 =

stat3 statl stat2

* Any of the these alternatives will render the same physical circuit

* Since the order does not matter, purely concurrent code can not

be used to implement synchronous circuits (only exception is a
GUARDED BLOCK).

* |[n general we can only build combinational logic circuits with
concurrent code. To obtain sequential logic circuits, sequential
code must be used.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Concurrent code outline

In summary, in concurrent code the following can be used:

* Operators

* The WHEN statement (WHEN/ELSE or WITH/SELECT/VWHEN)
* The GENERATE statement

* The BLOCK statement

Important: VWe haven'’t studied these, but WHEN and
GENERATE can only be used outside PROCESSES, FUNCTIONS,
or PROCEDURES.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Concurrent code with operators

e We've seen this before.

e [t's a 4-input, one bit per input 4-to-1 MUX
multiplexer done using only
operators.

LIBRARY ieee;
[The Output must be equal to the USE ieee.std logic 1164.all;

input selected by the selection ENTITY mux IS

bltS SI-SO PORT (a, b, ¢, d, s0, sl: IN STD LOGIC;
’ °
y: OUT STD LOGIC);
END mux;

* Not a very user friendly
. I . | ARCHITECTURE pure_ logic OF mux IS
implementation! -

125 0ne 20 0os L y <= (a AND NOT sl AND NOT s0) OR

F______ }______' (b AND NOT sl AND s0) OR

[] (¢ AND sl AND NOT s0) OR

| 1 ‘ (d AND sl AND s0);
— = = END pure logic;

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

WHEN (simple)

WHEN is one of the fundamental concurrent statements.
It appears in two forms: simple and selected

Let’s start with the syntax for simple WHEN:

assignment WHEN condition ELSE
assignment WHEN condition ELSE

this is obvious not the
. complete VHDL code
outp <= "000" WHEN (inp='0' OR reset='1') ELSE (|e :entity and
: "001" WHEN ctl='1' ELSE : .
architecture are
missing)

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Three forms of WHEN value

Another important aspect related to the WHEN statement is
that the “VWHEN value” shown in the syntax above can indeed
take up three forms:

WHEN value single value
WHEN valuel to value2 range, for enumerated data types

only
WHEN valuel | value2 |... valuel or value2 or ...

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

4-to-1 MUX using WHEN (simple)

* Much simpler than the previous ;% "% e,
implementation with logic
ENTITY mux IS
operators. PORT (a, b, ¢, d: IN STD LOGIC;

sel: IN STD _LOGIC _VECTOR (1 DOWNTO 0);
y: OUT STD_ LOGIC);

* The output will be identical END mux;

ARCHITECTURE muxl OF mux IS
BEGIN
Yy <= a WHEN sel="00" ELSE
b WHEN sel="01" ELSE
¢ WHEN sel="10" ELSE

END muxl;

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

WHEN (selected)

WHEN with the selected form is very similar to the simple VWHEN.

Here is its syntax:

WITH identifier SELECT
assignment WHEN value,
assignment WHEN value,

UNAFFECTED |S E With WITE/SELECT/WHEN

' WITH control SELECT

a very useful : output <= "000" WHEN reset,

"111" WHEN set
keyword '
UNAFFECTED WHEN OTHERS;

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

4-to-1 MUX using WHEN (selected)

* The form for simple or selected WHEN, are very similar and will yield
the same outcome.

WHEN (simple) WHEN (selected)

LIBRARY ieee;

LIBRARY ieee; . :
* USE ieee.std logic_1l64.all;

USE ieee.std logic_11l64.all;

ENTITY mux IS
PORT (a, b, ¢, d: IN STD LOGIC;
sel: IN STD LOGIC_VECTOR (1 DOWNTO 0);
y: OUT STD LOGIC);

ENTITY mux IS
PORT (a, b, ¢, d: IN STD_LOGIC;
sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
y: OUT STD LOGIC); END mux;
END mux;
ARCHITECTURE mux2 OF mux IS
BEGIN
WITH sel SELECT
Yy <= a WHEN "00", -- notice "," instead of ";*"
b WHEN "01",
¢ WHEN "10",
OTHERS; -- cannot be "d WHEN "11" "

ARCHITECTURE muxl OF mux
BEGIN
Yy <= a WHEN sel="00"
b WHEN sel="01"
¢ WHEN sel="10"
d;

END muxl; END mux2;
r

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Replacing sel (input) with INTEGER

WHEN (simple)

LIBRARY ieee;
USE ieee.std_logic_l1l64.all;

ENTITY mux IS
PORT (a, b, ¢, d: IN STD LOGIC;
sel: IN INTEGER RANGE 0 TO 3;
y: OUT STD_LOGIC);
END mux;
---- Solution 1l: with WHEN/ELSE
ARCHITECTURE muxl OF mux IS
BEGIN
Y <= a WHEN sel=0 ELSE
b WHEN sel=1 ELSE
¢ WHEN sel=2 ELSE
d;
END muxl;

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

WHEN (selected)

LIBRARY ieee;

USE ieee.std_logic_l1l64.all;

ENTITY mux IS

PORT (a, b, ¢, d: IN STD LOGIC;
sel: IN INTEGER RANGE 0 TO 3;
y: OUT STD LOGIC);

END mux;

-- Solution 2: with WITH/SELECT/WHEN
ARCHITECTURE mux2 OF mux IS

BEGIN
WITH sel SELECT
y <= a WHEN
b WHEN
c WHEN

END mux2;

-- here, 3 or OTHERS are equivalent,
-- for all options are tested anyway

WESTERN NEW ENGLAND

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Another example: tri-state buffer

LIBRARY ieee;

USE ieee.std logic 11l64.all; .« e
T * This is another example that

ENTITY tri state IS illustrates the use of VWHEN.
PORT (ena: IN STD_LOGIC;

input: IN STD LOGIC VECTOR (7 DOWNTO 0);
output: OUT STD LOGIC VECTOR (7 pownto 0)); ® |he 3-state buffer must

END tri_state; provide output = input when

ARCHITECTURE tri_state OF tri state IS ena (enable) IS |OW, or Output
BEGIN .
="LLLZ77777” (high

output <= input WHEN (ena='0') ELSE
(OTHERS => '3'); impedance) otherwise.

END tri state;

1000ns 2000ns 3000ns 400 0ns SCOIOns 6‘C013ns 7000ns 6000ns 900!

= 7 input (7:0) output (7:0)
&= input A

S output DZ

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Another example : decoder with with
simple WHEN

-——- Solution 1l: with WHEN/ELSE
X(n-1) —» 2 LIBRARY ieee;
X(n-2) —»| 1 xm USE ieee.std logic 1164.all;
) = (m-1:0)
ENCODER

X(1) —»

ENTITY encoder IS
X(0) —»

PORT (x: IN STD LOGIC VECTOR (7 DOWNTO 0);
y: OUT STD LOGIC VECTOR (2 DOWNTO 0));
END encoder;

* We assume that n is a power of 9

tWO SO m_IO 2(n) 10 ARCHITECTURE encoderl OF encoder IS
’ g 11 BEGIN

12 Y <= "000" WHEN "00000001" ELSE

e For simplicity, lets assign n=3 13 "001" WHEN x="00000010" ELSE
14 "010" WHEN x="00000100" ELSE

. .. 15 "011" WHEN x="00001000" ELSE
* One and only one input bit is 16 "100" WHEN x="00010000" ELSE

: . 17 "101" WHEN x="00100000" ELSE
eXPECted to be hlgh at a time, 18 "110" WHEN x="01000000" ELSE

whose address must be encoded 19 "111" *10000000"
20 "ZZZ":
at the output

21 END encoderl;

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Another example : decoder with
selected VWHEN

—~——— Solution 2: with WITH/SELECT/WHEN
X(n-1) , LIBRARY ieee;
X(n-2) —» 3 USE ieee.std logic_1l64.all;
nxim
. -1:0
ENCODER | (@ 10)
X(1) —» ENTITY encoder IS
X(0) —»| PORT (x: IN STD LOGIC VECTOR (7 DOWNTO 0);
y: OUT STD LOGIC VECTOR (2 DOWNTO 0));

END encoder;

¢ We assume that nisa Power Of ARCHITECTURE encoder2 OF encoder IS
two, so m=log2(n) .

WITH x SELECT
. . . . Yy <= "000" "00000001"
* For simplicity, lets assign n=3 001" “00000010"
"010" "00000100"
"011*" “00001000"
"“100" “00010000"

* One and only one input bit is

expected to be high at a time, "101" “00100000*
"110" “01000000"
whose address must be encoded 111 10000000"

at the output 21 "222" OTHERS ;

22 END encoder?;

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

