
CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 462
VHDL: Simulation and Synthesis

Topic #07 - b) VHDL implementations

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

When to use a FSM

• Any sequential circuit can in principle be modeled as a state
machine, this is not always advantageous.

• For example, implementing a counter as a FSM will likely result in
longer, more complex, and more error prone than in a
conventional approach.

• The FSM approach is advisable in systems whose tasks constitute
a well-structured list so all states can be easily enumerated.

• For example digital controllers, such as traffic light and elevator
controllers.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #1: BCD counter

• The state diagram of a 0-to-9
circular counter.

• Each state-name corresponds to
the decimal value of the output.

•We could easily perform do this BCD counter using all that we
learned thus far.

• However we are going to try to do this using a FSM, where each
counter outcome is a particular state.

• As you can see, the output depends only on the current state.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #1: BCD counter

• The problem with a FSM implementation is that when the
number of states is large it becomes cumbersome to enumerate
them all.

• This is no problem if we were trying to count without using a
FSM.

State name: three
Circuit output: 0011

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #1: BCD counter

• The operation of this FSM is simple.

• At every rising-edge clock cycle it will change its state.

•When each state changes, the circuit will return a new output
value.

•When rst is pressed, the present state will now be state zero.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

The state (enumerated data
type) is defined, and used for the
pr_state (present state) and

nx_state (next state).

This is how you
use enumerated

data types.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

The output count is the circuit
output at each stage.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Why the small delay?

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #1

• This template allows for the design
of any FSM.

• The design of the lower section of
the state machine is completely

separated from that of the upper
section.

Remember, in a FSM the next state
depends on the current input and

the current state.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #1

• All states of the machine are always
explicitly declared using an

enumerated data type.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #1

• The flip-flops are in the lower
section, so clock and reset are

connected to it.

• The other lower section’s input is
nx_state (next state), while pr_state

(present state) is its only output.

• The circuit of the lower section is
sequential, so a PROCESS is

required.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #1
• Here is some typical code for the

lower section:

• It has an, asynchronous reset,
which determines the initial state
of the system (state0),

• ... Followed by the synchronous
storage of nx_state (at the
positive transition of clock), which
will produce pr_state at the lower
section’s output.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #1

• The upper section is fully
combinational, so its code does not
need to be sequential; concurrent
code can be used as well.

• The CASE statement plays a the
central role.

• This code does two things: (a) it
assigns the output value and (b) it
establishes the next state.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #2: Simple FSM

• The system has two states (stateA and stateB), and must change
from one to the other every time d =‘1’ is received.

• The desired output is x=a when the machine is in stateA, or x=b
when in stateB. The initial (reset) state is stateA.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Implemented using FSM template #1

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #2: Simple FSM

• State only changes on the rising edge of CLK
• The output (x), which in this case does depend on the inputs (a or b,
depending on which state the machine is in), varies when a or b vary,
regardless of clk.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Using FSM template #1

•In FSM template #1 only pr_state is stored.

•Therefore, the overall circuit can be summarized as follows:

• Notice that in this case the output might change when the input
changes (asynchronous output).

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

What if we want a synchronous
output?

• In many applications, the signals are required to be
synchronous, so the output should be updated only when the
proper clock edge occurs.

• To make FSM machines synchronous, the output must be
stored as well.

• This is the goal of the FSM template #2.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #2

• Very few modifications from
template #1 are needed.

• For example, we can use an
additional signal (say, temp) to

compute the output value (upper
section), but only pass its value to

the actual output signal when a clock
event occurs (lower section).

Where output is ONLY updated
only at a rising clock edge

FSM output is here

Storing a temp!

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #3: Simple FSM whose output
only changes on a rising clock!

• The system has two states (stateA and stateB), and must change
from one to the other every time d =‘1’ is received.

• The desired output is x=a when the machine is in stateA and on
a rising clock edge, or x=b when in stateB and on a rising clock
edge. The initial (reset) state is stateA.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

• If the input (a or b) changes during
between two consecutive clock
edges, the change might not be

observed by the circuit; moreover,
when observed, it will be delayed

with respect to the input.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #3: Simulation

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #4 : String detector

We want to design a circuit that takes as
input a serial bit stream and outputs a ‘1’

whenever the sequence ‘‘111’’ occurs.

Overlaps must also be considered, that
is, if . . . 0111110 . . . occurs, than the

output should remain active for three
consecutive clock cycles.

There are four states, which we called
zero, one, two, and three, with the name

corresponding to the number of
consecutive ‘1’s detected.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Even if d changes, the upper section process
will still use the pr_state to make a

decision. So, q will only change on rising edge.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Example #4 : String detector

mailto:nalves@wne.edu
mailto:nalves@wne.edu

