CPE 462
VHDL: Simulation and Synthesis

Topic #07 - b) VHDL implementations

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

When to use a FSM

* Any sequential circuit can in principle be modeled as a state
machine, this is not always advantageous.

* For example, implementing a counter as a FSM will likely result in
longer, more complex, and more error prone than in a
conventional approach.

* The FSM approach is advisable in systems whose tasks constitute
a well-structured list so all states can be easily enumerated.

* For example digital controllers, such as traffic light and elevator
controllers.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #1: BCD counter

* The state diagram of a 0-to-9
circular counter.

rst

* Each state-name corresponds to
the decimal value of the output.
(0111)

* We could easily perform do this BCD counter using all that we
learned thus far.

* However we are going to try to do this using a FSM, where each
counter outcome is a particular state.

* As you can see, the output depends only on the current state.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #1: BCD counter

three
(0011)

State name: three
Circuit output: 001 |

* The problem with a FSM implementation is that when the
number of states is large it becomes cumbersome to enumerate
them all.

* This is no problem if we were trying to count without using a
FSM.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #1: BCD counter

* The operation of this FSM is simple.
* At every rising-edge clock cycle it will change its state.

* When each state changes, the circuit will return a new output
value.

* When rst is pressed, the present state will now be state zero.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std logic 1l164.all;

ENTITY counter IS
PORT (clk, rst: IN STD LOGIC;
count: OUT STD LOGIC VECTOR (3 DOWNTO 0));
END counter;

ARCHITECTURE state_machine OF counter IS
TYPE state IS (zero, one, two, three, four,
five, six, seven, eight, nine);
SIGNAL pr state, nx_state: state;

Lower section:
PROCESS (rst, clk)
BEGIN
IF (rst='1') THEN
pr_state <= zero;
ELSIF (clk'EVENT AND clk='l"') THEN
pr_state <= nx state;
END IF;
END PROCESS;
Upper section:
PROCESS (pr_state)
BEGIN
CASE pr_state IS
WHEN zero =>
count <= "0000";
nx state <= one;
WHEN one =>

WHEN two =>

count <= "0010";

nx_state <= three;
WHEN three =>

count <= "0011";

nx state <= four;
WHEN four =>

count <= "0100";

nx state <= five;
WHEN five =>

count <= "0101";

nx state <= six;
WHEN six =>

count <= "0110";

nx state <= seven;
WHEN seven =>

count <= "0111";

nx state <= eight;
WHEN eight =>

count <= "1000";

nx state <= nine;
WHEN nine =>

count <= "1001";

nx state <= zero;

count <= "Q0001"; END CASE;
nx state <= two; END PROCESS;
END state_machine;

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std_logic_l164.all;

ENTITY counter IS
PORT (clk, rst: IN STD LOGIC;
count: OUT STD LOGIC VECTOR (3 DOWNTO
END counter;

ARCHITECTURE state_machine OF counter IS
TYPE state IS (zero, one, two, three, £
five, six, seven, eight, nine);
SIGNAL pr state, nx state: state;

Lower section:
PROCESS (rst, clk)
BEGIN
IF (rst='1') THEN

‘--------------.

[prstate <= zero; § ge enumerated
ELSTIE "(2IX"EVERNT AND"&lk='1') THEN

pr_state <= nx state;
END IF;
END PROCESS;

data types.

Upper section:
PROCESS (pr_state)
BEGIN
CASE pr_state IS
WHEN zero =>
count <= "0000";
nx state <= one;
WHEN one =>
count <= "Q0001";
nx state <= two;

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

4| his is how you

The state (enumerated data
type) is defined, and used for the
pr_state (present state) and
nx_state (next state).

34 WHEN two =>

35 count <= "0010";
36 nx state <= three;
37 WHEN three =>

38 count <= "0011";
39 nx state <= four;
40 WHEN four =>

41 count <= "0100";
42 nx state <= five;
43 WHEN five =>

44 count <= "0101";
45 nx state <= six;
46 WHEN six =>

47 count <= "0110";
48 nx state <= seven;
49 WHEN seven =>

50 count <= "0111";
51 nx state <= eight;
52 WHEN eight =>

53 count <= "1000";
54 nx state <= nine;
55 WHEN nine =>

56 count <= "1001";
57 nx state <= zero;
58 END CASE;

59 END PROCESS;

60 END state machine;

WESTERN NEW ENGLAND
UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;

USE ieee.std logic 1l164.all; The OUtPUt Count iS the CiI‘CUit
ENTITY counter IS output at each stage.

PORT (clk, rst: IN STD LOGIC;

count: OUT STD LOGIC_VECTOR (3
END counter; 34 WHEN two =>

35 count <= "0010";

ARCHITECTURE state machine OF counter IS 36 nx_state <= three;
TYPE state IS (zero, one, two, three, 37 WHEN three =>
five, six, seven, eight, nine); 38 count <= "Q011";
SIGNAL pr state, nx state: state; 39 nx state <= four;
N - 40 WHEN four =>
Lower section: 41 count <= "0100";
PROCESS (rst, clk) 42 nx state <= five;
BEGIN 43 WHEN five =>
IF (rst='1"') THEN 44 count <= "0101";
pr_state <= zero; 45 nx state <= six;
ELSIF (clk'EVENT AND clk='l"') THEN 46 WHEN six =>

pr_state <= nx state; 47 count <= "0110";
END IF; 48 nx state <= seven;

END PROCESS; 49 WHEN seven =>
Upper section: 50 count <= "Q0111";

PROCESS (pr_state) 51 nx state <= eight;
BEGIN 52 WHEN eight =>

CASE pr state IS 53 count <= "1000";
WHEN_zero => 54 nx state <= nine;
count <= "0000"; 55 WHEN nine =>
nx state <= one; 56 count <= "1001";
WHEN ;ne => 57 nx state <= zero;
count <= "0001"; 58 END CASE;
nx state <= two; 59 END PROCESS;
B 60 END state machine;

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

= clk
= rst

@7 pr_state
< count

LIBRARY ieee;
USE ieee.std logic 1l164.all;

ENTITY counter IS

PORT (clk, rst: IN STD_LOGIC; W\/hy the small delay’

count: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
END counter; 34 WHEN two =>

35 count <= "0010";

ARCHITECTURE state machine OF counter IS 36 nx_state <= three;
TYPE state IS (zero, one, two, three, 37 WHEN three =>
five, six, seven, eight, nine); 38 count <= "0011";
SIGNAL pr state, nx state: state; 39 nx state <= four;
- - 40 WHEN four =>
Lower section: 41 count <= "0100";
PROCESS (rst, clk) 42 nx state <= five;
BEGIN 43 WHEN five =>
IF (rst='1') THEN 44 count <= "0101";

pr_state <= zero; 45 nx state <= six;
ELSIF (clk'EVENT AND clk='l') THEN 46 WHEN six =>

pr_state <= nx state; 47 count <= "0110";
END IF; 48 nx state <= seven;

END PROCESS; 49 WHEN seven =>
Upper section: 50 count <= "Q111";

PROCESS (pr_state) 51 nx state <= eight;
BEGIN 52 WHEN eight =>

CASE pr state IS 53 count <= "1000";
WHEN_zero => 54 nx state <= nine;
count <= "0000"; 55 WHEN nine =>
nx state <= one; 56 count <= "1001";
WHEN ;ne => 57 nx state <= zero;
count <= "0001"; 58 END CASE;
nx state <= two; 59 END PROCESS;
- 60 END state machine;

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;

FSM template #|

ENTITY <entity name> IS
PORT (input: IN <data_ type>;
reset, clock: IN STD LOGIC;

output: OUT <data_type>): Remember, in a FSM the next state

END <entity name>;

ARCHITECTURE <arch name> OF <entity name> IS dependS on the Cu I"I"ent inPUt and

TYPE state IS (state0, statel, state2, state3, ...);

SIGNAL pr_state, nx_state: state; the Current State.

Lower section:
PROCESS (reset, clock)
BEGIN
IF (reset='1') THEN
pr_state <= state0;
ELSIF (clock'EVENT AND clock='l') THEN | Combinational
pr_state <= nx state; logi
END IF; 0gIC
END PROCESS;
UPPEY SECLION: = o o o o o oo o o o o o
PROCESS (input, pr state)
BEGIN -
CASE pr state IS i
WHEN state0 => Sequential
IF (input = ...) THEN logic
output <= <value>;
nx state <= statel;
ELSE ...
END IF;
WHEN statel =>
IF (input = ...) THEN

Sutput <= <value>; * This template allows for the design

nx_state <= state2;

BGEE s of any FSM.

END IF;
WHEN state2 =>

Te (inpat - ...) THEN * The design of the lower section of

output <= <value>; . .
o i Ntate <= stated; the state machine is completely
separated from that of the upper
END CASE;

END IF;
END PROCESS; SeCtion.

END <arch_name>;

pr_state nx_state

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std logic_ll64.all;

ENTITY <entity name> IS
PORT (input: IN <data_type>;
reset, clock: IN STD LOGIC;
output: OUT <data type>);
END <entity name>;

ARCHITECTURE <arch name> OF <entity name>
TYPE state IS (state0, statel, state2, state3,
SIGNAL pr state, nx state: state;

Lower section:
PROCESS (reset, clock)
BEGIN
IF (reset='1') THEN
pr_state <= state0;
ELSIF (clock'EVENT AND clock='l') THEN
pr_state <= nx state;
END IF;
END PROCESS;
Upper Section: ==eccccccc e e e e e ————
PROCESS (input, pr state)
BEGIN -
CASE pr_state IS
WHEN state(=>
IF (input = ...) THEN
output <= <value>;
nx state <= statel;
ELSE ...
END IF;
WHEN statel =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state2;
ELSE ...
END IF;
WHEN state2 =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state3;
ELSE ...
END IF;

END CASE;
END PROCESS;
END <arch name>;

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #|

Combinational
logic

pr_state

Sequential
logic

* All states of the machine are always
explicitly declared using an
enumerated data type.

WESTERN NEW ENGLAND

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std logic_ll64.all;

ENTITY <entity name> IS
PORT (input: IN <data_type>;
reset, clock: IN STD LOGIC;
output: OUT <data type>);
END <entity name>;

ARCHITECTURE <arch name> OF <entity name> IS
TYPE state IS (state0, statel, state2, state3, ...);
SIGNAL pr state, nx state: state;

Lower section:
PROCESS (reset, clock)
BEGIN
IF (reset='1') THEN
pr_state <= state0;
ELSIF (clock'EVENT AND clock='l') THEN
pr_state <= nx state;
END IF;
END PROCESS;
UPPEY SECLION: = o o o o o oo o o o o o
PROCESS (input, pr state)
BEGIN -
CASE pr_state IS
WHEN state(=>
IF (input = ...) THEN
output <= <value>;
nx state <= statel;
ELSE ...
END IF;
WHEN statel =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state2;
ELSE ...
END IF;
WHEN state2 =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state3;
ELSE ...
END IF;

END CASE;
END PROCESS;
END <arch name>;

CPE 462 - VHDL: Simulation and Synthesis - Fall [|

Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #|
o

Combinational
logic

pr_state nx_state

Sequential
logic

\K

The flip-flops are in the lower
section, so clock and reset are
connected to it.

* The other lower section’s input is
nx_state (next state), while pr_state
(present state) is its only output.

e The circuit of the lower section is
sequential, so a PROCESS is
required.

WESTERN NEW ENGLAND

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std logic_ll64.all;

ENTITY <entity name> IS
PORT (input: IN <data_type>;
reset, clock: IN STD LOGIC;
output: OUT <data type>);
END <entity name>;

ARCHITECTURE <arch name> OF <entity name> IS
TYPE state IS (state0, statel, state2, state3, ...);
SIGNAL pr state, nx state: state;

Lower section:
PROCESS (reset, clock)
BEGIN
IF (reset='1') THEN
pr_state <= state0;
ELSIF (clock'EVENT AND clock='l') THEN
pr_state <= nx state;
END IF;
END PROCESS;
UPPEY SECLION: = o o o o o oo o o o o o
PROCESS (input, pr state)
BEGIN -
CASE pr_state IS
WHEN state(=>
IF (input = ...) THEN
output <= <value>;
nx state <= statel;
ELSE ...
END IF;
WHEN statel =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state2;
ELSE ...
END IF;
WHEN state2 =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state3;
ELSE ...
END IF;

END CASE;
END PROCESS;
END <arch_name>;

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #|

* Here is some typical code for the
lower section:

PROCESS (reset, clock)
BEGIN
IF (reset='l') THEN
pr_state <= state0;
ELSIF (clock'EVENT AND clock='l') THEN
pr_state <= nx state;
END IF;
END PROCESS;

* |t has an, asynchronous reset,
which determines the initial state
of the system (state0),

e ... Followed by the synchronous
storage of nx_state (at the
positive transition of clock), which
will produce pr_state at the lower
section’s output.

WESTERN NEW ENGLAND

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std logic_ll64.all;

ENTITY <entity name> IS
PORT (input: IN <data_type>;
reset, clock: IN STD LOGIC;
output: OUT <data type>);
END <entity name>;

ARCHITECTURE <arch name> OF <entity name> IS
TYPE state IS (state0, statel, state2, state3, ...);
SIGNAL pr state, nx state: state;

Lower section:
PROCESS (reset, clock)
BEGIN
IF (reset='1') THEN
pr_state <= state0;
ELSIF (clock'EVENT AND clock='l') THEN
pr_state <= nx state;
END IF;
END PROCESS;
UPPEY SECLION: = o o o o oo o o o o o e
PROCESS (input, pr state)
BEGIN -
CASE pr_state IS
WHEN state(=>
IF (input = ...) THEN
output <= <value>;
nx state <= statel;
ELSE ...
END IF;
WHEN statel =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state2;
ELSE ...
END IF;
WHEN state2 =>
IF (input = ...) THEN
output <= <value>;
nx_state <= state3;
ELSE ...
END IF;

END CASE;
END PROCESS;
END <arch name>;

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #|
o

Combinational
logic

pr_state nx_state

Sequential
logic

. Theﬁion is fully
combinational, so its code does not
need to be sequential; concurrent
code can be used as well.

* The CASE statement plays a the
central role.

* This code does two things: (a) it
assigns the output value and (b) it
establishes the next state.

WESTERN NEW ENGLAND

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #2: Simple FSM

d=1
stateB
(x=b)
d=1
rst

* The system has two states (stateA and stateB), and must change
from one to the other every time d =°|’ is received.

* The desired output is x=a when the machine is in stateA, or x=b
when in stateB. The initial (reset) state is stateA.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Implemented using FSM template #1

31 IF (d='1') THEN nx state <= stateA;
32 ELSE nx state <= stateB;

33 END IF;

34 END CASE;

35 END PROCESS;

36 END simple fsm;

ENTITY simple fsm IS
PORT (a, b, d, clk, rst: IN BIT;
x: OUT BIT);
END simple fsm;

ARCHITECTURE simple fsm OF simple fsm IS
TYPE state IS (stateA, stateB);
SIGNAL pr_state, nx state: state;

10 BEGIN
1l Lower section:

d=1
12 PROCESS (rst, clk)
13 BEGIN state A stateB
14 IF (rst='1') THEN (x=b)
15 pr_state <= stateA;

d=1

16 ELSIF (clk'EVENT AND clk='l"') THEN

17 pr_state <= nx state;

18 END IF;

19 END PROCESS;

20 Upper section: ---—--—-eemeeee—-
21 PROCESS (a, b, d, pr_state)

22 BEGIN

23 CASE pr_state IS

24 WHEN stateA =>

25 X <= a;

26 IF (d='1') THEN nx state <= stateB;
27 ELSE nx state <= stateA;

28 END IF;

29 WHEN stateB =>

30 X <= b;

rst

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #2: Simple FSM

state A stateB
(x=a)

d=1

1250ns 250 Uns 375 Ons 500 Ons 625 Ons 750 (

= clh [N G] P (N S Nl NN M A [I

——— m [

- d

- a

b LI LS

o pr_siate I
- X

* State only changes on the rising edge of CLK

* The output (x), which in this case does depend on the inputs (a or b,
depending on which state the machine is in), varies when a or b vary,
regardless of clk.

CPE 462 - VHDL: Simulation and Synthesis - Fall | | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Using FSM template #1

®|n FSM template #| only pr_state is stored.

® Therefore, the overall circuit can be summarized as follows:

Logic gates

INPUL ==

Flip-flops

B

® Notice that in this case the output might change when the input
changes (asynchronous output).

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

What if we want a synchronous
output!?

® |n many applications, the signals are required to be
synchronous, so the output should be updated only when the
proper clock edge occurs.

® To make FSM machines synchronous, the output must be
stored as well.

Logic gates Flip-flops

D il
(R

Flip-flops

17

® This is the goal of the FSM template #2.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std logic_ll64.all;

ENTITY <ent_ name> IS
PORT (input: IN <data_ type>;
reset, clock: IN STD LOGIC;
output: OUT <data type>);
END <ent name>;

ARCHITECTURE <arch_name> OF <ent name> IS

TYPE states IS (state(, statel, state2,
SIGNAL pr state, nx state: states;
SIGNAL temp: <data_ type>;

state3, ...):;

Lower section:
PROCESS (reset, clock)
BEGIN
IF (reset='1"') THEN
pr_state <= statel;
ELSIF (clock'EVENT AND clock='l') THEN

output <= temp; _
pr_state <= nx_state;
FSM output is here

END IF;
END PROCESS;

Upper section:
PROCESS (pr_state)
BEGIN
CASE pr state IS
WHEN state0 =>
temp <= <value>;
IF (condition) THEN nx state <= statel;

Storing a temp!

END IF;
WHEN statel =>
temp <= <value>;
IF (condition) THEN nx_state <= state2;
END IF;
WHEN state2 =>
temp <= <value>;
IF (condition) THEN nx state <= state3;

END IF;
END CASE;
END PROCESS;
END <arch name>;

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

FSM template #2

Where output is ONLY updated
only at a rising clock edge

| Combinational
logic

pr_state nx_state

Sequential
logic

Very few modifications from
template #I are needed.

For example, we can use an
additional signal (say, temp) to
compute the output value (upper
section), but only pass its value to

the actual output signal when a clock

event occurs (lower section).

WESTERN NEW ENGLAND WNE

UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #3: Simple FSM whose output
only changes on a rising clock!

stateB
(x=b)

* The system has two states (stateA and stateB), and must change
from one to the other every time d =°|’ is received.

F 3

clk rst

* The desired output is x=a when the machine is in stateA and on
a rising clock edge, or x=b when in stateB and on a rising clock
edge. The initial (reset) state is stateA.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

ENTITY simple fsm IS
PORT (a, b, d, clk, rst: IN BIT;
Xx: OUT BIT);
END simple fsm;

ARCHITECTURE simple fsm OF simple fsm IS
TYPE state IS (stateA, stateB);
SIGNAL pr state, nx state: state;
SIGNAL temp: BIT;

* If the input (a or b) changes during
between two consecutive clock
edges, the change might not be

observed by the circuit; moreover,
when observed, it will be delayed
with respect to the input.

d=1
state A stateB
(x=a) (x=b)
d=1

rst

CPE 462 - VHDL: Simulation and Synthesis - Fall [|
Nuno Alves (nalves@wne.edu), College of Engineering

11 BEGIN

12
13
14
15
16
17
18
19
20

Lower section:
PROCESS (rst, clk)
BEGIN
IF (rst='1') THEN
pr_state <= stateA;
ELSIF (clk'EVENT AND clk='l') THEN
X <= temp;
pr_state <= nx state;
END IF;
END PROCESS;
Upper section: —--———-———ceemmemeee-
PROCESS (a, b, d, pr_state)
BEGIN
CASE pr_state IS
WHEN stateA =>
temp <= a;
IF (d='1') THEN nx state <= stateB;
ELSE nx_state <= stateA;
END IF;
WHEN stateB =>
temp <= b;
IF (d='1l') THEN nx state <= stateA;
ELSE nx_state <= stateB;
END IF;
END CASE;
END PROCESS;

38 END simple fsm;

WESTERN NEW ENGLAND
UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #3: Simulation

d=1
state A stateB
(x=a) (x=b)
d=1

125.0ns 250L0ns 375L0ns 500‘0115 625.‘0ns

- clk
- rst

- d

- a

w— b

& pr_state
-y X

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

Example #4 : String detector

We want to design a circuit that takes as
input a serial bit stream and outputs a ‘I’
whenever the sequence “1 | |” occurs

a=t |
d=0“. Overlaps must also be considered, that

is,if...Oll1110...occurs,than the

! output should remain active for three
consecutive clock cycles.
There are four states, which we called

Zero, one, two, and three, with the name
corresponding to the number of
consecutive ‘|I’s detected.

CPE 462 - VHDL: Simulation and Synthesis - Fall ’1 | WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

LIBRARY ieee;
USE ieee.std logic_1l64.all;

ENTITY string detector IS
PORT (d, clk, rst: IN BIT;
g: OUT BIT);
END string detector;

23
24
25
26
27
28
29
30
31

ARCHITECTURE my_arch OF string detector IS 32

TYPE state IS (zero, one, two, three);
SIGNAL pr state, nx_state: state;

Lower section:
PROCESS (rst, clk)
BEGIN
IF (rst='1') THEN
pr_state <= zero;
ELSIF (clk'EVENT AND clk='l"') THEN
pr_state <= nx state;
END IF;
END PROCESS;

33
34
33
36
37
38
39

40
41
42
43
44
45
46
47
48

Upper section: —--—-——-—-——ceeeeee-
PROCESS (d, pr_state)
BEGIN
CASE pr_state IS
WHEN zero =>
qg<='0";
IF (d='1') THEN nx_state <=
ELSE nx state <= zero;
END IF;
WHEN one =>
q <= '0";
IF (d='1') THEN nx state <=
ELSE nx state <= zero;
END IF;
WHEN two =>
g <= '0";
IF (d='1') THEN nx_state <= three;

ELSE nx state <= zero;
END IF;
WHEN three =>
q<="'1l";
IF (d='0') THEN nx_state <=
ELSE nx_state <= three;
END IF;
END CASE;
END PROCESS;

49 END my_arch;

d=1

Even if d changes, the upper section process
will still use the pr_state to make a
decision. So, q will only change on rising edge.

WESTERN NEW ENGLAND

Example #4 : String detector

v~ clk l_
= rst
- ¢

oy pr_state
-» q

CPE 462 - VHDL: Simulation and Synthesis - Fall [| WESTERN NEW ENGLAND WNE
Nuno Alves (nalves@wne.edu), College of Engineering UNIVERSITY

mailto:nalves@wne.edu
mailto:nalves@wne.edu

