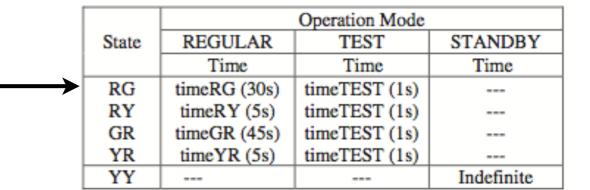
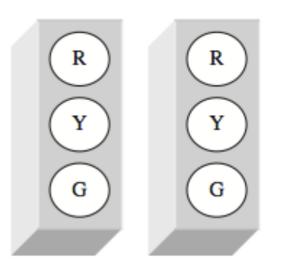
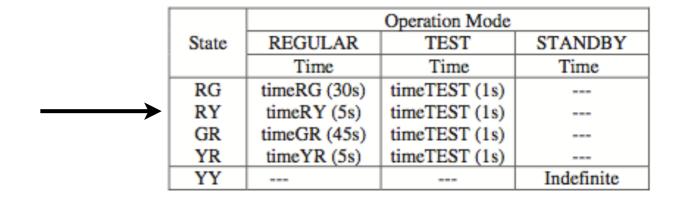
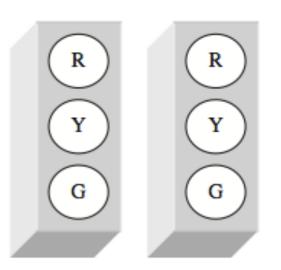
CPE 462 VHDL: Simulation and Synthesis

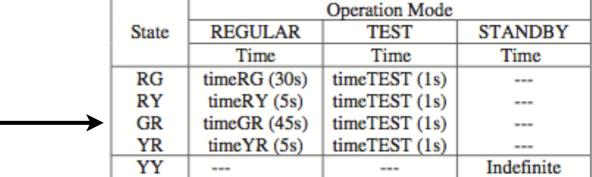

Topic #07 - d) Finite State Machines with delay

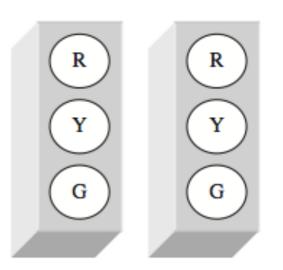

Finite State Machines (FSM) with delay

- On previous classes we learned about FSM
- FSM are machines that alternate between different states
- Today we are going to learn about FSM which change their states after some time.

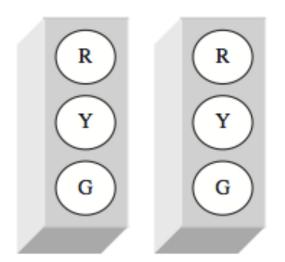

 We are going to implement the control for a traffic light in a intersection.


- There are only two traffic lights (Red, Yellow and Green).
- There are three modes of operation: Regular, Test and Standby.
- In the regular mode, the FSM start
 when light#1=Red and light#2=Green.
 The machine remains in this state for
 30 seconds



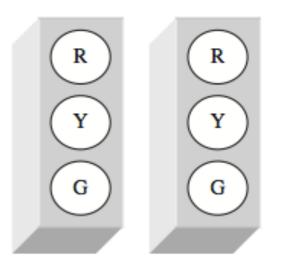


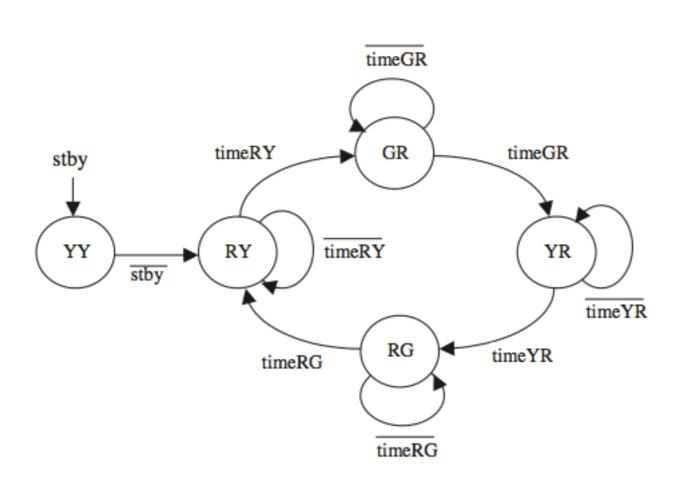
• Then the state machine will change to light#I=Red and light#2=Yellow and remain there for 5 seconds.



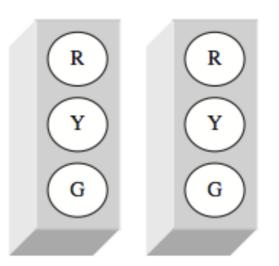
- Then the state machine will change to light#I=Green and light#2=Red and stay there for 45 seconds
- ... and so on

- If the machine is in **TEST** mode...
- All pre-programmed times are going to be overwritten (by a manual switch) with a small value, such that the system can be easily tested during maintenance (I second per state).


State	REGULAR	TEST	STANDBY	
	Time	Time	Time	
RG	timeRG (30s)	timeTEST (1s)		
RY	timeRY (5s)	timeTEST (1s)		
GR	timeGR (45s)	timeTEST (1s)		
YR	timeYR (5s)	timeTEST (1s)		
YY			Indefinite	



- If the machine is in **STANDBY** mode...
- Both traffic lights will be **Y**ellow, until the machine gets out of standby mode.
- This will happen in a sensor detects some problem in the circuitry.

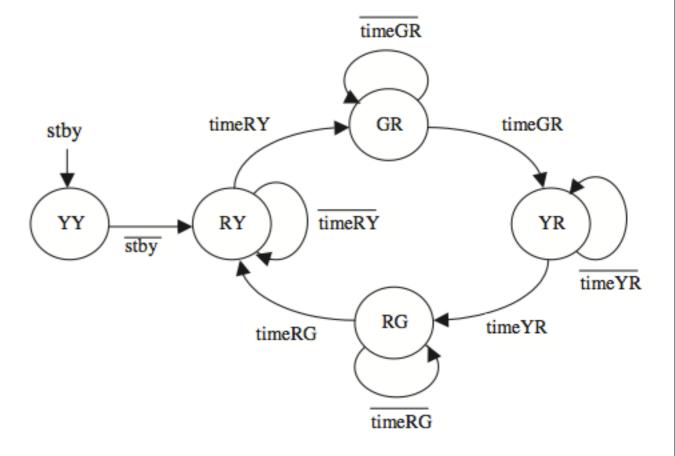

	Operation Mode			
State	REGULAR TEST		STANDBY	
	Time	Time	Time	
RG	timeRG (30s)	timeTEST (1s)		
RY	timeRY (5s)	timeTEST (1s)		
GR	timeGR (45s)	timeTEST (1s)		
YR	timeYR (5s)	timeTEST (1s)		
YY			Indefinite	

	Operation Mode			
State	REGULAR TEST		STANDBY	
	Time	Time	Time	
RG	timeRG (30s)	timeTEST (1s)		
RY	timeRY (5s)	timeTEST (1s)		
GR	timeGR (45s)	timeTEST (1s)		
YR	timeYR (5s)	timeTEST (1s)		
YY			Indefinite	

VHDL implementation

- Next slide will show the full VHDL implementation of this FSM, which is based on the FSM template #1.
- Here is the entity part of the code

```
ENTITY tlc IS


PORT ( clk, stby, test: IN STD_LOGIC;

r1, r2, y1, y2, g1, g2: OUT STD_LOGIC);

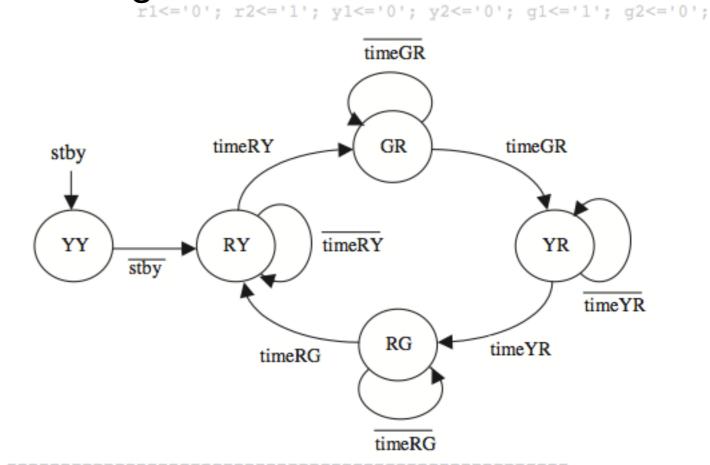
END tlc;
```

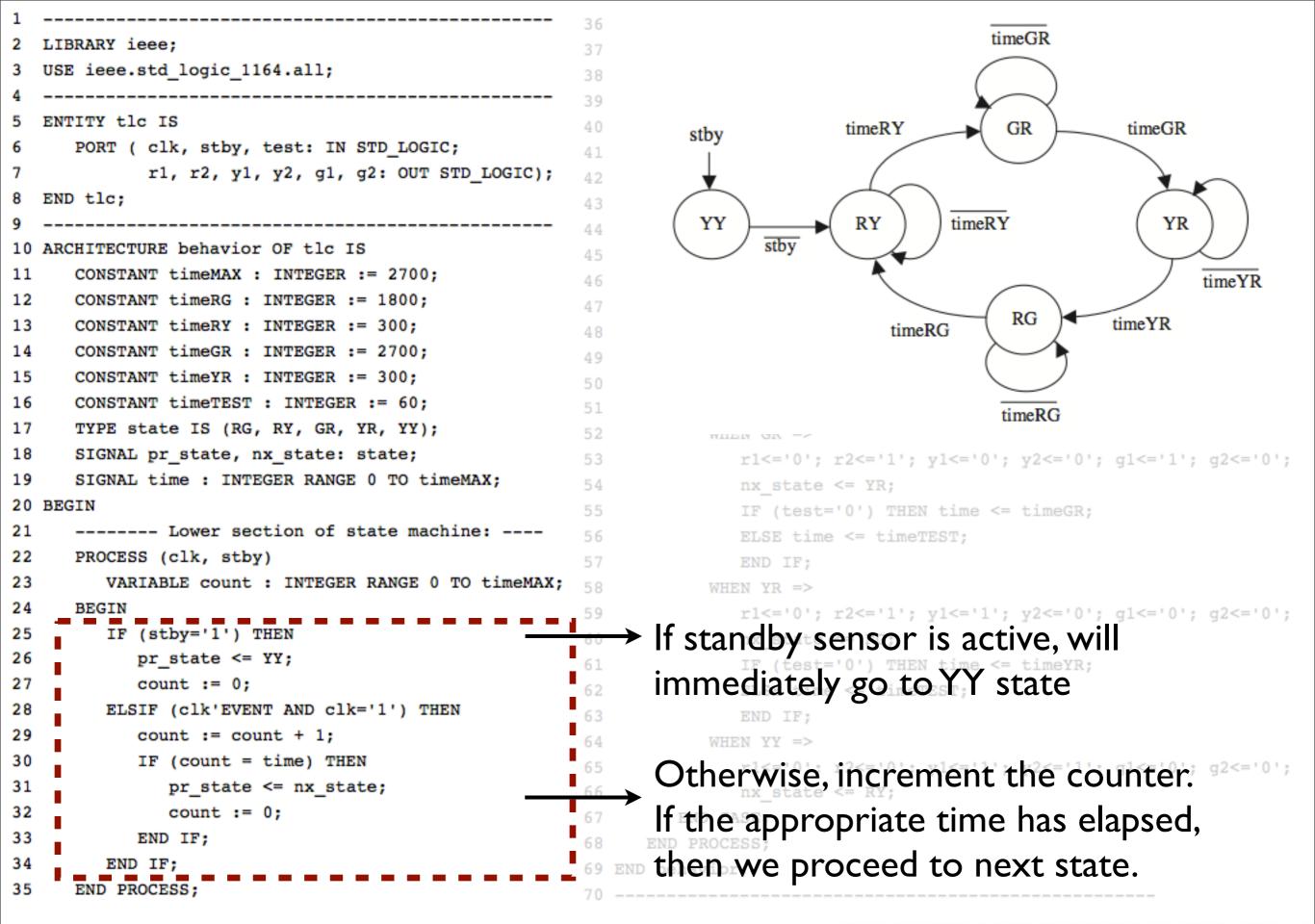
- The signal clk is a 60Hz clock (60 beats per second)
- ... So there will be 60 * 5 beats in 5 seconds

		Operation Mode			
State		REGULAR TEST		STANDBY	
		Time	Time	Time	
	RG	timeRG (30s)	timeTEST (1s)		
	RY	timeRY (5s)	timeTEST (1s)		
	GR	timeGR (45s)	timeTEST (1s)		
	YR	timeYR (5s)	timeTEST (1s)		
	YY			Indefinite	


```
36
                                                                 ----- Upper section of state machine: ----
  LIBRARY ieee;
                                                           37
                                                                 PROCESS (pr state, test)
  USE ieee.std logic 1164.all;
                                                           39
                                                                    CASE pr_state IS
  ENTITY tlc IS
                                                           40
                                                                        WHEN RG =>
      PORT ( clk, stby, test: IN STD LOGIC;
                                                           41
                                                                           r1<='1'; r2<='0'; y1<='0'; y2<='0'; g1<='0'; g2<='1';
             r1, r2, y1, y2, g1, g2: OUT STD LOGIC);
                                                                           nx state <= RY;
 END tlc;
                                                           43
                                                                           IF (test='0') THEN time <= timeRG;</pre>
                                                                           ELSE time <= timeTEST;</pre>
10 ARCHITECTURE behavior OF tlc IS
                                                           45
                                                                           END IF;
11
      CONSTANT timeMAX : INTEGER := 2700;
                                                           46
                                                                        WHEN RY =>
12
      CONSTANT timeRG : INTEGER := 1800;
                                                           47
                                                                           r1<='1'; r2<='0'; y1<='0'; y2<='1'; g1<='0'; g2<='0';
13
      CONSTANT timeRY : INTEGER := 300;
                                                           48
                                                                           nx state <= GR;</pre>
      CONSTANT timeGR : INTEGER := 2700;
14
                                                           49
                                                                           IF (test='0') THEN time <= timeRY;</pre>
15
      CONSTANT timeYR : INTEGER := 300;
                                                           50
                                                                           ELSE time <= timeTEST;</pre>
16
      CONSTANT timeTEST : INTEGER := 60;
                                                           51
                                                                           END IF;
17
      TYPE state IS (RG, RY, GR, YR, YY);
                                                           52
                                                                        WHEN GR =>
18
      SIGNAL pr state, nx state: state;
                                                           53
                                                                           r1<='0'; r2<='1'; y1<='0'; y2<='0'; g1<='1'; g2<='0';
19
      SIGNAL time : INTEGER RANGE 0 TO timeMAX;
                                                           54
                                                                           nx state <= YR;</pre>
20 BEGIN
                                                                           IF (test='0') THEN time <= timeGR;</pre>
                                                           55
      ----- Lower section of state machine: ----
21
                                                           56
                                                                           ELSE time <= timeTEST;</pre>
22
      PROCESS (clk, stby)
                                                           57
                                                                           END IF;
23
          VARIABLE count : INTEGER RANGE 0 TO timeMAX;
                                                                        WHEN YR =>
24
      BEGIN
                                                           59
                                                                           r1<='0'; r2<='1'; y1<='1'; y2<='0'; g1<='0'; g2<='0';
25
         IF (stby='1') THEN
                                                           60
                                                                           nx state <= RG;</pre>
26
             pr state <= YY;</pre>
                                                                           IF (test='0') THEN time <= timeYR;</pre>
                                                           61
27
           count := 0;
                                                           62
                                                                           ELSE time <= timeTEST;</pre>
28
         ELSIF (clk'EVENT AND clk='1') THEN
                                                           63
                                                                           END IF;
29
             count := count + 1;
                                                           64
                                                                       WHEN YY =>
30
            IF (count = time) THEN
                                                           65
                                                                           r1<='0'; r2<='0'; y1<='1'; y2<='1'; q1<='0'; q2<='0';
31
              pr state <= nx state;</pre>
                                                                           nx state <= RY;</pre>
32
              count := 0;
                                                           67
                                                                    END CASE:
33
             END IF;
                                                           68
                                                                 END PROCESS;
34
         END IF;
                                                           69 END behavior;
35
      END PROCESS;
```

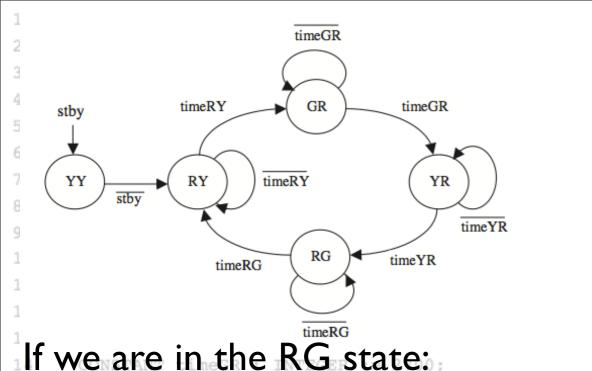
CPE 462 - VHDL: Simulation and Synthesis - Fall 'I I Nuno Alves (nalves@wne.edu), College of Engineering


```
LIBRARY ieee;
   USE ieee.std logic 1164.all;
   ENTITY tlc IS
      PORT ( clk, stby, test: IN STD LOGIC;
             r1, r2, y1, y2, g1, g2: OUT STD LOGIC);
   END tlc;
10 ARCHITECTURE behavior OF tlc IS
11
      CONSTANT timeMAX : INTEGER := 2700;
12
      CONSTANT timeRG : INTEGER := 1800;
13
      CONSTANT timeRY : INTEGER := 300;
14
      CONSTANT timeGR : INTEGER := 2700;
15
      CONSTANT timeYR : INTEGER := 300;
16
      CONSTANT timeTEST : INTEGER := 60;
17
      TYPE state IS (RG, RY, GR, YR, YY);
18
      SIGNAL pr_state, nx_state: state;
19
      SIGNAL time : INTEGER RANGE 0 TO timeMAX;
20 BEGIN
      ----- Lower section of state machine: ----
21
22
      PROCESS (clk, stby)
                                                          57
23
         VARIABLE count : INTEGER RANGE 0 TO timeMAX;
24
      BEGIN
                                                          59
25
         IF (stby='1') THEN
                                                          60
26
             pr state <= YY;</pre>
                                                          61
27
            count := 0;
                                                          62
         ELSIF (clk'EVENT AND clk='1') THEN
29
             count := count + 1;
30
            IF (count = time) THEN
                pr state <= nx state;</pre>
31
32
                count := 0;
33
             END IF;
34
         END IF;
35
      END PROCESS;
```


```
----- Upper section of state machine: ----
PROCESS (pr state, test)
BEGIN
  CASE pr state IS
```

	Operation Mode			0';	g2<='1';
State	REGULAR	TEST	STANDBY		
	Time	Time	Time		
RG	timeRG (30s)	timeTEST (1s)			
RY	timeRY (5s)	timeTEST (1s)			
GR	timeGR (45s)	timeTEST (1s)			
YR	timeYR (5s)	timeTEST (1s)			
YY			Indefinite	101:	g2<='0';

IF (test='0') THEN time <= timeRY;</pre> Defining different delays for each transition


Declaring all 5 states

CPE 462 - VHDL: Simulation and Synthesis - Fall 'I I Nuno Alves (nalves@wne.edu), College of Engineering

37

38

39

40

41

50

51

52

53

54

55

59 60

I. We set the appropriate outputs (rl becomes 1, r2 becomes 0 and

- Lower section of state machine: ----PROCESS (clk, stby

2. We specify what is going to be the next state (RY)

ELSIF (clk'EVENT AND clk='1') THEN 3. If we are in the **TEST** mode of operation, then we will not wait for 66 the time that is defined in the

REGULAR mode of operation.

```
----- Upper section of state machine: ----
      PROCESS (pr state, test)
      BEGIN
          CASE pr state IS
             WHEN RG =>
                 r1<='1'; r2<='0'; y1<='0'; y2<='0'; g1<='0'; g2<='1';
                 nx state <= RY;</pre>
                 IF (test='0') THEN time <= timeRG;</pre>
                 ELSE time <= timeTEST;</pre>
                 r1<='1'; r2<='0'; y1<='0'; y2<='1'; g1<='0'; g2<='0';
                 nx state <= GR;</pre>
                 IF (test='0') THEN time <= timeRY;</pre>
                 ELSE time <= timeTEST;</pre>
                 END IF;
             WHEN GR =>
                 r1<='0'; r2<='1'; y1<='0'; y2<='0'; g1<='1'; g2<='0';
                 nx_state <= YR;</pre>
                 IF (test='0') THEN time <= timeGR;</pre>
                 ELSE time <= timeTEST;</pre>
                 END IF;
             WHEN YR =>
                 r1<='0'; r2<='1'; y1<='1'; y2<='0'; g1<='0'; g2<='0';
                 nx_state <= RG;</pre>
                 IF (test='0') THEN time <= timeYR;</pre>
                 ELSE time <= timeTEST;</pre>
                 END IF;
             WHEN YY =>
                 r1<='0'; r2<='0'; y1<='1'; y2<='1'; g1<='0'; g2<='0';
                 nx state <= RY;</pre>
          END CASE:
      END PROCESS;
69 END behavior;
```