
CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

CPE 462
VHDL: Simulation and Synthesis

Topic #08 - d) Procedures

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Review of VHDL functions

• In mathematics a
function is just a box...
You add some inputs,
and you will get some
modified outputs

• A VHDL FUNCTION
takes a set of inputs
and returns a single
output.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

VHDL PROCEDURE

• A PROCEDURE is very similar to a FUNCTION and has the
same basic purposes.

• However, a procedure can return more than one value.

• Like a FUNCTION, two parts are necessary to construct and use
a PROCEDURE: the procedure itself (procedure body) and a
procedure call.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Overview of PROCEDUREs

• A PROCEDURE can have any number of IN, OUT, or INOUT
parameters, which can be SIGNALS, VARIABLES, or CONSTANTS.

• For input signals (mode IN), the default is CONSTANT, whereas
for output signals (mode OUT or INOUT) the default is
VARIABLE.

• A PROCEDURE like functions can be on a package or inside the
main code

• Here is an example of the header section of a procedure...

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Two PROCEDURE Examples

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

• The min_max code makes use
of a PROCEDURE called sort.

• It takes two 8-bit unsigned
integers as inputs (inp1, inp2),
sorts them, then outputs the
smaller value at min_out and
the higher value at max_out.

• The PROCEDURE is located in
the declarative part of the
ARCHITECTURE (main code).

• The PROCEDURE call,
sort(inp1,inp2,min_out,max_ou
t), is a statement on its own.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

• Same procedure as the previous slide, but inside a package

• This means, we now need two files to run the procedure.

Package file Main code

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Differences between FUNCTION and
PROCEDURES

• A FUNCTION has zero or more input parameters and a single
return value. The input parameters can only be CONSTANTS
(default) or SIGNALS (VARIABLES are not allowed).

• A PROCEDURE can have any number of IN, OUT, and INOUT
parameters, which can be SIGNALS, VARIABLES, or
CONSTANTS. For input parameters the default is CONSTANT,
whereas for output parameters the default is VARIABLE.

• A FUNCTION is called as part of an expression, while a
PROCEDURE is a statement on its own.

• In both, WAIT and COMPONENTS are not synthesizable.

• Both FUNCTIONS and PROCEDURES can be placed beneath the
architecture or inside PACKAGES

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

Assert Operation

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

ASSERT

• Assert is a very useful operation for simulation!

• This is not synthesizable

• ASSERT is a non-synthesizable statement whose purpose is to
write out messages (on the screen, for example) when problems
are found during simulation.

• Its syntax is the following:

The severity level can be: Note, Warning, Error (default), or
Failure. The message is written when the condition is FALSE.

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

ASSERT example: severity failure will
abort simulation

--entry_point.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity topLevel is
 port (A, B : in STD_LOGIC;
 F : out STD_LOGIC);
end entity;

architecture STRUCTURE of topLevel is
begin

! assert (a=b)
 report "A is not equal to B!"
! severity failure;
!
! F <= A AND B;

end architecture;

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

ASSERT example: severity note will
continue simulation

--entry_point.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity topLevel is
 port (A, B : in STD_LOGIC;
 F : out STD_LOGIC);
end entity;

architecture STRUCTURE of topLevel is
begin

! assert (a=b)
 report "A is not equal to B!"
! severity note;
!
! F <= A AND B;

end architecture;

mailto:nalves@wne.edu
mailto:nalves@wne.edu

CPE 462 - VHDL: Simulation and Synthesis - Fall ’11
Nuno Alves (nalves@wne.edu), College of Engineering

When to use assert

Example: Say that we have written a function to add two binary
numbers, where it was assumed that the input parameters must
have the same number of bits. In order to check such an
assumption, the following ASSERT statement could be included in
the function body:

mailto:nalves@wne.edu
mailto:nalves@wne.edu

