# Moving things

Day #4



#### Servo motors

- A Servo is a small device that has an output shaft.
- This shaft can be positioned to specific angular positions (0-180 degrees) by sending the servo a coded signal.
- As the coded signal changes, the angular position of the shaft changes.







## Moving a servo



```
#include <Servo.h>
Servo myservo; int pos = 0;
void setup() { myservo.attach(9); }
 void loop()
   //move servo to 45 degrees
   myservo.write(45);
   delay(1000); //wait 1 second
   //move servo to 90 degrees
   myservo.write(90);
   //wait 1 second
   delay(1000);
```



# Sweeping motion

 Create a program that will continuously move the servo from 0 to 180 degrees and back.







# Using a potentiometer to specify the servo angle

- Instead of sweeping all angles, use a potentiometer to define an angle.
- You need to determine what are the potentiometer analog input ranges.





```
//connect potentiometer to analog pin #0
//connect servo control to digital pin#9
#include <Servo.h>
Servo myservo;
int potpin = 0;
int val;
void setup() { myservo.attach(9); }
void loop()
  val = analogRead(potpin);
  // scale analog input to an angle
  val = map(val, 0, 1023, 0, 179);
  myservo.write(val);
  delay(15);
```

#### DC Motors



They come in all forms and sizes.

- With or without gears
- How much juice it needs to spin?
- How fast it spins
- How strong it spins
- Size, shaft diameter, shaft length,...



### How to connect a DC motor?

To drive them, apply a voltage
The higher the voltage, the faster the spinning



polarity determines which way it rotates



Try this out real quick.
Then swap polarity





# DC motors as generators

Just as voltage causes rotation...



...rotation causes voltage

This is used for "regenerative braking" in electric & hybrid cars





# Same idea as a dynamo





#### Transistors and motors

 Transistors are small switches. A little juice in once leg, will close the switch.

#### little motor



#### big motor



switching a different power source

Transistors switch big signals with small signals.



# Protecting your circuit





 Since motors can act like generators, need to prevent them from generating juice back into the circuit.





#### Run a DC motor



```
const int DCMotorpin=9;
void setup()
{
   pinMode(DCMotorpin, OUTPUT);
};

void loop() {
   analogWrite(DCMotorpin, 200);
};
```

- Implement the DC motor circuit and run it. Change the analog values, for different speeds.
- Adjust the speed of the motor using a potentiometer.
- Adjust the speed of the motor using any other resistive sensor.